June  2011, 4(2): 401-426. doi: 10.3934/krm.2011.4.401

On a relativistic Fokker-Planck equation in kinetic theory

1. 

Departamento de Matemática Aplicada, Facultad de ciencias, Universidad de Granada, 18071 Granada, Spain

2. 

Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada

Received  November 2010 Revised  January 2011 Published  April 2011

A relativistic kinetic Fokker-Planck equation that has been recently proposed in the physical literature is studied. It is shown that, in contrast to other existing relativistic models, the one considered in this paper is invariant under Lorentz transformations in the absence of friction. A similar property (invariance by Galilean transformations in the absence of friction) is verified in the non-relativistic case. In the first part of the paper some fundamental mathematical properties of the relativistic Fokker-Planck equation are established. In particular, it is proved that the model is compatible with the finite propagation speed of particles in relativity. In the second part of the paper, two non-linear relativistic mean-field models are introduced. One is obtained by coupling the relativistic Fokker-Planck equation to the Maxwell equations of electrodynamics, and is therefore of interest in plasma physics. The other mean-field model couples the Fokker-Planck dynamics to a relativistic scalar theory of gravity (the Nordström theory) and is therefore of interest in gravitational physics. In both cases the existence of steady states for all possible prescribed values of the mass is established. In the gravitational case this result is better than for the corresponding non-relativistic model, the Vlasov-Poisson-Fokker-Planck system, for which existence of steady states is known only for small mass.
Citation: José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401
References:
[1]

F. Andreu, V. Caselles, J. M. Mazón and S. Moll, Finite propagation speed for limited flux diffusion equations,, Arch. Ration. Mech. Anal., 182 (2006), 269.  doi: 10.1007/s00205-006-0428-3.  Google Scholar

[2]

M. Bostan and T. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case,, Kinet. Relat. Models, 1 (2008), 139.   Google Scholar

[3]

F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with coulombic and Newtonian potentials,, Diff. Integ. Eqs., 8 (1995), 487.   Google Scholar

[4]

S. Calogero, Spherical symmetric steady states of galactic dynamics in scalar gravity,, Class. Quant. Grav., 20 (2003), 1729.  doi: 10.1088/0264-9381/20/9/310.  Google Scholar

[5]

S. Calogero, Global classical solutions to the 3D Nordström-Vlasov system,, Comm. Math. Phys., 266 (2006), 343.  doi: 10.1007/s00220-006-0029-x.  Google Scholar

[6]

S. Calogero, O. Sánchez and J. Soler, Asymptotic behavior and orbital stability of galactic dynamics in relativistic scalar gravity,, Arch. Rat. Mech. Anal., 194 (2009), 743.  doi: 10.1007/s00205-008-0173-x.  Google Scholar

[7]

S. Calogero, J. Calvo, O. Sánchez and J. Soler, Virial inequalities for steady states in relativistic galactic dynamics,, Nonlinearity, 23 (2010), 1851.  doi: 10.1088/0951-7715/23/8/004.  Google Scholar

[8]

S. Calogero, Exponential convergence to equilibrium for kinetic Fokker-Planck equations on Riemannian manifolds,, preprint, ().   Google Scholar

[9]

J. A. Carrillo, P. Laurençot and J. Rosado, Fermi-Dirac-Fokker-Planck equation: Well-posedness $&$ long-time asymptotics,, J. Diff. Eqns., 247 (2009), 2209.  doi: 10.1016/j.jde.2009.07.018.  Google Scholar

[10]

G. Chac\'on-Acosta and G. M. Kramer, Fokker-Planck-type equations for a simple gas and for a semirelativistic Brownian motion from a relativistic kinetic theory,, Phys. Rev. E., 76 (2007).  doi: 10.1103/PhysRevE.76.021201.  Google Scholar

[11]

S. Chandrasekhar, Stochastic problems in physics and astronomy,, Rev Mod. Phys., 15 (1943), 1.  doi: 10.1103/RevModPhys.15.1.  Google Scholar

[12]

F. Debbasch and C. Chevalier, Relativistic stochastic processes: A review,, AIP Conf. Proc., 913 (2007), 42.  doi: 10.1063/1.2746722.  Google Scholar

[13]

J. Dolbeault, Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: External potential and confinement (large time behavior and steady states),, J. Math. Pures Appl., 78 (1999), 121.  doi: 10.1016/S0021-7824(01)80006-4.  Google Scholar

[14]

K. Dressler, Steady states in plasma physics-the Vlasov-Fokker-Planck equation,, Math. Meth. Appl. Sci., 12 (1990), 471.  doi: 10.1002/mma.1670120603.  Google Scholar

[15]

K. Dressler, Stationary solutions of the Vlasov-Fokker-Planck equation,, Math. Meth. Appl. Sci., 9 (1987), 169.  doi: 10.1002/mma.1670090113.  Google Scholar

[16]

J. Dunkel and P. Hänggi, Theory of the relativistic Brownian motion: The (1+3)-dimensional case,, Phys. Rev. E, 72 (2005).  doi: 10.1103/PhysRevE.72.036106.  Google Scholar

[17]

J. Dunkel and P. Hänggi, Relativistic Brownian motion,, Phys. Rep., 471 (2009), 1.  doi: 10.1016/j.physrep.2008.12.001.  Google Scholar

[18]

D. T. Frank, "Nonlinear Fokker-Planck Equations: Fundamentals and Applications,", Springer Series in Synergetics {\bf 25}, 25 (2005).   Google Scholar

[19]

R. T. Glassey, J. Schaeffer and Y. Zheng, Steady states of the Vlasov-Poisson-Fokker-Planck system,, J. Math. An. Appl., 202 (1996), 1058.  doi: 10.1006/jmaa.1996.0360.  Google Scholar

[20]

Z. Haba, Relativistic diffusion,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.021128.  Google Scholar

[21]

Z. Haba, Relativistic diffusion of elementary particles with spin,, Journ. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/44/445401.  Google Scholar

[22]

Z. Haba, Energy and entropy of relativistic diffusing particles,, Mod. Phys. Lett. A, 25 (2010), 2683.  doi: 10.1142/S0217732310033992.  Google Scholar

[23]

Z. Haba, Relativistic diffusive transport,, preprint \arXiv{0911.3126}., ().   Google Scholar

[24]

B. Helffer and F. Nier, "Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators And Witten Laplacians,", Lecture Notes in Mathematics {\bf 1862}, 1862 (1862).   Google Scholar

[25]

L. Hörmander, Pseudodifferential operators and non-elliptic boundary problems,, Ann. of Math., 83 (1966), 129.  doi: 10.2307/1970473.  Google Scholar

[26]

F. John, Blow-up for quasi linear wave equations in three space dimensions,, Comm. Pure Appl. Math., 34 (1981), 29.  doi: 10.1002/cpa.3160340103.  Google Scholar

[27]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", Graduate Texts in Mathematics {\bf 113} 2$^{nd}$ edition, 113 (1991).   Google Scholar

[28]

C. R. Lai, On the one-and-one-half-dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity,, Math. Meth. Appl. Sci., 21 (1998), 1287.  doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G.  Google Scholar

[29]

E. H. Lieb and M. Loss, "Analysis,", American Math. Soc. {\bf 14}, 14 (1997).   Google Scholar

[30]

C.-P. Ma and E. Bertschinger, A cosmological kinetic theory for the evolution of cold dark matter halos with substructure: Quasi-linear theory,, The Astroph. J., 612 (2004), 28.   Google Scholar

[31]

M. Risken, "The Fokker-Planck Equation: Methods of Solutions and Applications,", Springer Series in Synergetics {\bf 18}, 18 (1996).   Google Scholar

[32]

M. Schunck, M. Hegmann and E. Sedlmayr, The influence of stochastic density fluctuations on the infrared emissions of interstellar dark clouds,, Mon. Noti. Royal Astron. Soc., 374 (2007), 949.  doi: 10.1111/j.1365-2966.2006.11215.x.  Google Scholar

[33]

S. L. Shapiro and S. A. Teukolsky, Scalar gravitation: A laboratory for numerical relativity,, Phys. Rev. D, 47 (1993), 1529.  doi: 10.1103/PhysRevD.47.1529.  Google Scholar

[34]

C. Sogge, "Lectures on Nonlinear Wave Equations,", International Press, (1995).   Google Scholar

[35]

J. L. Vázquez, "The Porous Medium Equation: Mathematical Theory,", Oxford Math. Monogr., (2007).   Google Scholar

[36]

T. Yang and H. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system,, SIAM J. Math. Anal., 42 (2010), 459.  doi: 10.1137/090755796.  Google Scholar

[37]

C. Villani, Hypocoercivity,, Memoirs of the AMS, 202 (2009).   Google Scholar

show all references

References:
[1]

F. Andreu, V. Caselles, J. M. Mazón and S. Moll, Finite propagation speed for limited flux diffusion equations,, Arch. Ration. Mech. Anal., 182 (2006), 269.  doi: 10.1007/s00205-006-0428-3.  Google Scholar

[2]

M. Bostan and T. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case,, Kinet. Relat. Models, 1 (2008), 139.   Google Scholar

[3]

F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with coulombic and Newtonian potentials,, Diff. Integ. Eqs., 8 (1995), 487.   Google Scholar

[4]

S. Calogero, Spherical symmetric steady states of galactic dynamics in scalar gravity,, Class. Quant. Grav., 20 (2003), 1729.  doi: 10.1088/0264-9381/20/9/310.  Google Scholar

[5]

S. Calogero, Global classical solutions to the 3D Nordström-Vlasov system,, Comm. Math. Phys., 266 (2006), 343.  doi: 10.1007/s00220-006-0029-x.  Google Scholar

[6]

S. Calogero, O. Sánchez and J. Soler, Asymptotic behavior and orbital stability of galactic dynamics in relativistic scalar gravity,, Arch. Rat. Mech. Anal., 194 (2009), 743.  doi: 10.1007/s00205-008-0173-x.  Google Scholar

[7]

S. Calogero, J. Calvo, O. Sánchez and J. Soler, Virial inequalities for steady states in relativistic galactic dynamics,, Nonlinearity, 23 (2010), 1851.  doi: 10.1088/0951-7715/23/8/004.  Google Scholar

[8]

S. Calogero, Exponential convergence to equilibrium for kinetic Fokker-Planck equations on Riemannian manifolds,, preprint, ().   Google Scholar

[9]

J. A. Carrillo, P. Laurençot and J. Rosado, Fermi-Dirac-Fokker-Planck equation: Well-posedness $&$ long-time asymptotics,, J. Diff. Eqns., 247 (2009), 2209.  doi: 10.1016/j.jde.2009.07.018.  Google Scholar

[10]

G. Chac\'on-Acosta and G. M. Kramer, Fokker-Planck-type equations for a simple gas and for a semirelativistic Brownian motion from a relativistic kinetic theory,, Phys. Rev. E., 76 (2007).  doi: 10.1103/PhysRevE.76.021201.  Google Scholar

[11]

S. Chandrasekhar, Stochastic problems in physics and astronomy,, Rev Mod. Phys., 15 (1943), 1.  doi: 10.1103/RevModPhys.15.1.  Google Scholar

[12]

F. Debbasch and C. Chevalier, Relativistic stochastic processes: A review,, AIP Conf. Proc., 913 (2007), 42.  doi: 10.1063/1.2746722.  Google Scholar

[13]

J. Dolbeault, Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: External potential and confinement (large time behavior and steady states),, J. Math. Pures Appl., 78 (1999), 121.  doi: 10.1016/S0021-7824(01)80006-4.  Google Scholar

[14]

K. Dressler, Steady states in plasma physics-the Vlasov-Fokker-Planck equation,, Math. Meth. Appl. Sci., 12 (1990), 471.  doi: 10.1002/mma.1670120603.  Google Scholar

[15]

K. Dressler, Stationary solutions of the Vlasov-Fokker-Planck equation,, Math. Meth. Appl. Sci., 9 (1987), 169.  doi: 10.1002/mma.1670090113.  Google Scholar

[16]

J. Dunkel and P. Hänggi, Theory of the relativistic Brownian motion: The (1+3)-dimensional case,, Phys. Rev. E, 72 (2005).  doi: 10.1103/PhysRevE.72.036106.  Google Scholar

[17]

J. Dunkel and P. Hänggi, Relativistic Brownian motion,, Phys. Rep., 471 (2009), 1.  doi: 10.1016/j.physrep.2008.12.001.  Google Scholar

[18]

D. T. Frank, "Nonlinear Fokker-Planck Equations: Fundamentals and Applications,", Springer Series in Synergetics {\bf 25}, 25 (2005).   Google Scholar

[19]

R. T. Glassey, J. Schaeffer and Y. Zheng, Steady states of the Vlasov-Poisson-Fokker-Planck system,, J. Math. An. Appl., 202 (1996), 1058.  doi: 10.1006/jmaa.1996.0360.  Google Scholar

[20]

Z. Haba, Relativistic diffusion,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.021128.  Google Scholar

[21]

Z. Haba, Relativistic diffusion of elementary particles with spin,, Journ. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/44/445401.  Google Scholar

[22]

Z. Haba, Energy and entropy of relativistic diffusing particles,, Mod. Phys. Lett. A, 25 (2010), 2683.  doi: 10.1142/S0217732310033992.  Google Scholar

[23]

Z. Haba, Relativistic diffusive transport,, preprint \arXiv{0911.3126}., ().   Google Scholar

[24]

B. Helffer and F. Nier, "Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators And Witten Laplacians,", Lecture Notes in Mathematics {\bf 1862}, 1862 (1862).   Google Scholar

[25]

L. Hörmander, Pseudodifferential operators and non-elliptic boundary problems,, Ann. of Math., 83 (1966), 129.  doi: 10.2307/1970473.  Google Scholar

[26]

F. John, Blow-up for quasi linear wave equations in three space dimensions,, Comm. Pure Appl. Math., 34 (1981), 29.  doi: 10.1002/cpa.3160340103.  Google Scholar

[27]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", Graduate Texts in Mathematics {\bf 113} 2$^{nd}$ edition, 113 (1991).   Google Scholar

[28]

C. R. Lai, On the one-and-one-half-dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity,, Math. Meth. Appl. Sci., 21 (1998), 1287.  doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G.  Google Scholar

[29]

E. H. Lieb and M. Loss, "Analysis,", American Math. Soc. {\bf 14}, 14 (1997).   Google Scholar

[30]

C.-P. Ma and E. Bertschinger, A cosmological kinetic theory for the evolution of cold dark matter halos with substructure: Quasi-linear theory,, The Astroph. J., 612 (2004), 28.   Google Scholar

[31]

M. Risken, "The Fokker-Planck Equation: Methods of Solutions and Applications,", Springer Series in Synergetics {\bf 18}, 18 (1996).   Google Scholar

[32]

M. Schunck, M. Hegmann and E. Sedlmayr, The influence of stochastic density fluctuations on the infrared emissions of interstellar dark clouds,, Mon. Noti. Royal Astron. Soc., 374 (2007), 949.  doi: 10.1111/j.1365-2966.2006.11215.x.  Google Scholar

[33]

S. L. Shapiro and S. A. Teukolsky, Scalar gravitation: A laboratory for numerical relativity,, Phys. Rev. D, 47 (1993), 1529.  doi: 10.1103/PhysRevD.47.1529.  Google Scholar

[34]

C. Sogge, "Lectures on Nonlinear Wave Equations,", International Press, (1995).   Google Scholar

[35]

J. L. Vázquez, "The Porous Medium Equation: Mathematical Theory,", Oxford Math. Monogr., (2007).   Google Scholar

[36]

T. Yang and H. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system,, SIAM J. Math. Anal., 42 (2010), 459.  doi: 10.1137/090755796.  Google Scholar

[37]

C. Villani, Hypocoercivity,, Memoirs of the AMS, 202 (2009).   Google Scholar

[1]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[2]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[3]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[4]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[5]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[6]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[7]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[8]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[9]

José A. Carrillo, Renjun Duan, Ayman Moussa. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinetic & Related Models, 2011, 4 (1) : 227-258. doi: 10.3934/krm.2011.4.227

[10]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic & Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[11]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic & Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[12]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

[13]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[14]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[15]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[16]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations & Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[17]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[18]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[19]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[20]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]