Citation: |
[1] |
R. Alonso and E. Carneiro, Estimates for the Boltzmann collision operator via radial symmetry and Fourier transform, Adv. Math., 223 (2010), 511-528.doi: 10.1016/j.aim.2009.08.017. |
[2] |
R. Alonso, E. Carneiro and I. M. Gamba, Convolution inequalities for the Boltzmann collision operator, Comm. Math. Physics, 298 (2010), 293-322.doi: 10.1007/s00220-010-1065-0. |
[3] |
R. Alonso, J. A. Canizo, I. M. Gamba, C. Mohout and S. Mischler, The Homogeneous Boltzmann equation for hard potentials with a cold thermostat, work in progress. |
[4] |
R. Alonso and I. M. Gamba, Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137 (2009), 1147-1165.doi: 10.1007/s10955-009-9873-3. |
[5] |
R. Alonso and I. M. Gamba, Revision on classical solutions to the Cauchy Boltzmann problem for soft potentials, submitted for publication (2010). |
[6] |
R. Alonso, I. M. Gamba and S. H. Tharkabhushaman, Accuracy and consistency of Lagrangian based conservative spectral method for space-homogeneous Boltzmann equation, work in progress. |
[7] |
T. Carleman, "Problèmes Mathématiques dans la Théorie Cinétique des Gaz," Publ. Sci. Inst. Mittag-Leffler, 2. Almqvist and Wiksell, Uppsala, 1957. |
[8] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Appl. Math. Sci. Springer-Verlag, Berlin, 1994. |
[9] |
I. M. Gamba, V. Panferov and C. Villani, On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys., 246 (2004), 503-541.doi: 10.1007/s00220-004-1051-5. |
[10] |
I. M. Gamba, V. Panferov and C. Villani, Upper Maxwellians bounds for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 194 (2009), 253-282.doi: 10.1007/s00205-009-0250-9. |
[11] |
I. M. Gamba and S. H. Tharkabhushaman, Spectral-Lagrangian based methods applied to computation of non-equilibrium statistical states, Jour. Comp. Phys., 228 (2009), 2012-2036.doi: 10.1016/j.jcp.2008.09.033. |
[12] |
I. M. Gamba and S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-lagrangian methods for the inhomogeneous Boltzmann transport equation, Jour. Comp. Math., 28 (2010), 430-460. |
[13] |
T. Gustafsson, Global $L^p$ properties for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 103 (1988), 1-38.doi: 10.1007/BF00292919. |
[14] |
L. D. Landau and E. M. Lifshitz, "Mechanics," third ed. A course of theoretical physics. Vol. 1, Pergamon Press, Oxford, 1976. |
[15] |
P.-L. Lions, Compactness in Boltzmann equation via Fourier integral operators and applications I, II, III, J. Math. Kyoto Univ., 34 (1994), 391-427, 429-461, 539-584. |
[16] |
C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces in $\mathbbR^n$. Averages over hypersurfaces II, Invent. Math., 82 (1985), 543-556 and 86 (1986), 233-242. |
[17] |
C. D. Sogge and E. M. Stein, Averages over hypersurfaces. Smoothness of generalized Radon transforms, J. Analyse Math., 54 (1990), 165-188.doi: 10.1007/BF02796147. |
[18] |
C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Rat. Mech. Anal., 173 (2004), 169-212.doi: 10.1007/s00205-004-0316-7. |
[19] |
B. Wennberg, Regularity in the Boltzmann equation and the Radon transform, Comm.. Part. Diff. Eqs., 19 (1994), 2057-2074.doi: 10.1080/03605309408821082. |