• Previous Article
    An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits
  • KRM Home
  • This Issue
  • Next Article
    On a relativistic Fokker-Planck equation in kinetic theory
June  2011, 4(2): 427-439. doi: 10.3934/krm.2011.4.427

On a model for mass aggregation with maximal size

1. 

Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, Netherlands

2. 

Department of Mathematics, Saarland University, 66123 Saarbrücken, Germany

3. 

Oxford Centre of Nonlinear PDE, Mathematical Insitute, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, United Kingdom

4. 

School of Computer and Communication Sciences, École polytechnique fédérale de Lausanne, CH - 1015 Lausanne, Switzerland

Received  October 2010 Revised  December 2010 Published  April 2011

We study a kinetic mean-field equation for a system of particles with different sizes, in which particles are allowed to coagulate only if their sizes sum up to a prescribed time-dependent value. We prove well-posedness of this model, study the existence of self-similar solutions, and analyze the large-time behavior mostly by numerical simulations. Depending on the parameter $k_0$, which controls the probability of coagulation, we observe two different scenarios: For $k_0>2$ there exist two self-similar solutions to the mean field equation, of which one is unstable. In numerical simulations we observe that for all initial data the rescaled solutions converge to the stable self-similar solution. For $k_0<2$, however, no self-similar behavior occurs as the solutions converge in the original variables to a limit that depends strongly on the initial data. We prove rigorously a corresponding statement for $k_0\in (0,1/3)$. Simulations for the cross-over case $k_0=2$ are not completely conclusive, but indicate that, depending on the initial data, part of the mass evolves in a self-similar fashion whereas another part of the mass remains in the small particles.
Citation: Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427
References:
[1]

Phys. Rev. E, 76 (2007), 060102. doi: 10.1103/PhysRevE.76.060102.  Google Scholar

[2]

In G. M. Hidy and J. R. Brock eds., "Topics in current aerosol research (Part 2)"; International reviews in Aerosol Physics and Chemistry, Pergamon (1972), 201-376 Google Scholar

[3]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.  Google Scholar

[4]

Comm. Math. Phys., 256 (2005) 589-609. doi: 10.1007/s00220-004-1258-5.  Google Scholar

[5]

J. Funct. Anal., 233 (2006) 351-379. doi: 10.1016/j.jfa.2005.07.013.  Google Scholar

[6]

Wiley, New York, 1977. Google Scholar

[7]

J. Nonlinear Science, 13 (2003), 311-346. doi: 10.1007/s00332-002-0543-8.  Google Scholar

[8]

Phys. Reports, 383 (2003), 95-212. doi: 10.1016/S0370-1573(03)00241-2.  Google Scholar

[9]

Comm. Pure Appl. Math., 57 (2004), 1197-1232. doi: 10.1002/cpa.3048.  Google Scholar

[10]

Trans. AMS, 362 (2010), 6551-6590. doi: 10.1090/S0002-9947-2010-05085-8.  Google Scholar

[11]

Phys. Zeitschr., 17 (1916), 557-599. Google Scholar

[12]

J. Statist. Phys., 23 (1980), 241-263. doi: 10.1007/BF01012594.  Google Scholar

show all references

References:
[1]

Phys. Rev. E, 76 (2007), 060102. doi: 10.1103/PhysRevE.76.060102.  Google Scholar

[2]

In G. M. Hidy and J. R. Brock eds., "Topics in current aerosol research (Part 2)"; International reviews in Aerosol Physics and Chemistry, Pergamon (1972), 201-376 Google Scholar

[3]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.  Google Scholar

[4]

Comm. Math. Phys., 256 (2005) 589-609. doi: 10.1007/s00220-004-1258-5.  Google Scholar

[5]

J. Funct. Anal., 233 (2006) 351-379. doi: 10.1016/j.jfa.2005.07.013.  Google Scholar

[6]

Wiley, New York, 1977. Google Scholar

[7]

J. Nonlinear Science, 13 (2003), 311-346. doi: 10.1007/s00332-002-0543-8.  Google Scholar

[8]

Phys. Reports, 383 (2003), 95-212. doi: 10.1016/S0370-1573(03)00241-2.  Google Scholar

[9]

Comm. Pure Appl. Math., 57 (2004), 1197-1232. doi: 10.1002/cpa.3048.  Google Scholar

[10]

Trans. AMS, 362 (2010), 6551-6590. doi: 10.1090/S0002-9947-2010-05085-8.  Google Scholar

[11]

Phys. Zeitschr., 17 (1916), 557-599. Google Scholar

[12]

J. Statist. Phys., 23 (1980), 241-263. doi: 10.1007/BF01012594.  Google Scholar

[1]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[4]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009

[5]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025

[6]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[7]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[8]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[9]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[10]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[11]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[12]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[13]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[14]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[15]

Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021072

[16]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[19]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[20]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

[Back to Top]