-
Previous Article
Validity of the Boltzmann equation with an external force
- KRM Home
- This Issue
-
Next Article
An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits
On Villani's conjecture concerning entropy production for the Kac Master equation
1. | Department of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States |
References:
[1] |
A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys., 94, (1999), 603-618.
doi: 10.1023/A:1004537522686. |
[2] |
E. A. Carlen, M. C. Carvalho and M. Loss, Many-body aspects of approach to equilibrium, "Séminaire Equations aux Dérivées Partielles'' (La Chapelle sur Erdre, 2000), |
[3] |
E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model, Kinet. Relat. Models, 3 (2010), 85-122.
doi: 10.3934/krm.2010.3.85. |
[4] |
E. Janvresse, Spectral gap for Kac's model of Boltzmann equation, Ann. Probab., 29 (2001), 288-304.
doi: 10.1214/aop/1008956330. |
[5] |
M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. III, pp. 171-197. University of California Press, Berkeley and Los Angeles, 1956. |
[6] |
C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.
doi: 10.1007/s00220-002-0777-1. |
show all references
References:
[1] |
A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys., 94, (1999), 603-618.
doi: 10.1023/A:1004537522686. |
[2] |
E. A. Carlen, M. C. Carvalho and M. Loss, Many-body aspects of approach to equilibrium, "Séminaire Equations aux Dérivées Partielles'' (La Chapelle sur Erdre, 2000), |
[3] |
E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model, Kinet. Relat. Models, 3 (2010), 85-122.
doi: 10.3934/krm.2010.3.85. |
[4] |
E. Janvresse, Spectral gap for Kac's model of Boltzmann equation, Ann. Probab., 29 (2001), 288-304.
doi: 10.1214/aop/1008956330. |
[5] |
M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. III, pp. 171-197. University of California Press, Berkeley and Los Angeles, 1956. |
[6] |
C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.
doi: 10.1007/s00220-002-0777-1. |
[1] |
Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457 |
[2] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[3] |
Yakov Varshavsky. A proof of a generalization of Deligne's conjecture. Electronic Research Announcements, 2005, 11: 78-88. |
[4] |
Eric A. Carlen, Maria C. Carvalho, Amit Einav. Entropy production inequalities for the Kac Walk. Kinetic and Related Models, 2018, 11 (2) : 219-238. doi: 10.3934/krm.2018012 |
[5] |
Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007 |
[6] |
Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure and Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101 |
[7] |
Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic and Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277 |
[8] |
Chengzhi Li, Changjian Liu. A proof of a Dumortier-Roussarie's conjecture. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022095 |
[9] |
Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic and Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009 |
[10] |
Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341 |
[11] |
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 |
[12] |
Yong Li, Hongren Wang, Xue Yang. Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2607-2623. doi: 10.3934/dcdsb.2018123 |
[13] |
Jiyoung Han. Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2205-2225. doi: 10.3934/dcds.2020359 |
[14] |
Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631 |
[15] |
Jan Hladký, Diana Piguet, Miklós Simonovits, Maya Stein, Endre Szemerédi. The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs. Electronic Research Announcements, 2015, 22: 1-11. doi: 10.3934/era.2015.22.1 |
[16] |
Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122 |
[17] |
Artur O. Lopes, Jairo K. Mengue. On information gain, Kullback-Leibler divergence, entropy production and the involution kernel. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3593-3627. doi: 10.3934/dcds.2022026 |
[18] |
Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421 |
[19] |
Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 |
[20] |
Shuhei Hayashi. A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2285-2313. doi: 10.3934/dcds.2020114 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]