• Previous Article
    Validity of the Boltzmann equation with an external force
  • KRM Home
  • This Issue
  • Next Article
    An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits
June  2011, 4(2): 479-497. doi: 10.3934/krm.2011.4.479

On Villani's conjecture concerning entropy production for the Kac Master equation

1. 

Department of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States

Received  September 2010 Revised  February 2011 Published  April 2011

In this paper we take an idea presented in recent paper by Carlen, Carvalho, Le Roux, Loss, and Villani ([3]) and push it one step forward to find an exact estimation on the entropy production. The new estimation essentially proves that Villani's conjecture is correct, or more precisely that a much worse bound to the entropy production is impossible in the general case.
Citation: Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479
References:
[1]

A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation,, J. Statist. Phys., 94 (1999), 603.  doi: 10.1023/A:1004537522686.  Google Scholar

[2]

E. A. Carlen, M. C. Carvalho and M. Loss, Many-body aspects of approach to equilibrium,, Exp. No. XI, 12 pp., Univ. Nantes, Nantes, 2000., (2000).   Google Scholar

[3]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85.  doi: 10.3934/krm.2010.3.85.  Google Scholar

[4]

E. Janvresse, Spectral gap for Kac's model of Boltzmann equation,, Ann. Probab., 29 (2001), 288.  doi: 10.1214/aop/1008956330.  Google Scholar

[5]

M. Kac, Foundations of kinetic theory,, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, III (1956), 1954.   Google Scholar

[6]

C. Villani, Cercignani's conjecture is sometimes true and always almost true,, Comm. Math. Phys., 234 (2003), 455.  doi: 10.1007/s00220-002-0777-1.  Google Scholar

show all references

References:
[1]

A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation,, J. Statist. Phys., 94 (1999), 603.  doi: 10.1023/A:1004537522686.  Google Scholar

[2]

E. A. Carlen, M. C. Carvalho and M. Loss, Many-body aspects of approach to equilibrium,, Exp. No. XI, 12 pp., Univ. Nantes, Nantes, 2000., (2000).   Google Scholar

[3]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85.  doi: 10.3934/krm.2010.3.85.  Google Scholar

[4]

E. Janvresse, Spectral gap for Kac's model of Boltzmann equation,, Ann. Probab., 29 (2001), 288.  doi: 10.1214/aop/1008956330.  Google Scholar

[5]

M. Kac, Foundations of kinetic theory,, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, III (1956), 1954.   Google Scholar

[6]

C. Villani, Cercignani's conjecture is sometimes true and always almost true,, Comm. Math. Phys., 234 (2003), 455.  doi: 10.1007/s00220-002-0777-1.  Google Scholar

[1]

Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457

[2]

Eric A. Carlen, Maria C. Carvalho, Amit Einav. Entropy production inequalities for the Kac Walk. Kinetic & Related Models, 2018, 11 (2) : 219-238. doi: 10.3934/krm.2018012

[3]

Yakov Varshavsky. A proof of a generalization of Deligne's conjecture. Electronic Research Announcements, 2005, 11: 78-88.

[4]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[5]

Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic & Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277

[6]

Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007

[7]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[8]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[9]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[10]

Yong Li, Hongren Wang, Xue Yang. Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2607-2623. doi: 10.3934/dcdsb.2018123

[11]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[12]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[13]

Jan Hladký, Diana Piguet, Miklós Simonovits, Maya Stein, Endre Szemerédi. The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs. Electronic Research Announcements, 2015, 22: 1-11. doi: 10.3934/era.2015.22.1

[14]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[15]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[16]

Lotfi Tadj, Zhe George Zhang, Chakib Tadj. A queueing analysis of multi-purpose production facility's operations. Journal of Industrial & Management Optimization, 2011, 7 (1) : 19-30. doi: 10.3934/jimo.2011.7.19

[17]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[18]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

[19]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[20]

Alex Eskin, Gregory Margulis and Shahar Mozes. On a quantitative version of the Oppenheim conjecture. Electronic Research Announcements, 1995, 1: 124-130.

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]