\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Validity of the Boltzmann equation with an external force

Abstract Related Papers Cited by
  • We establish local-in-time validity of the Boltzmann equation in the presence of an external force deriving from a $C^2$ potential.
    Mathematics Subject Classification: Primary: 76P05, 82C40; Secondary: 76A20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Arch. Rat. Mech. Anal., 198 (2010), 125-187.doi: 10.1007/s00205-010-0292-z.

    [2]

    S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction I: Derivation of kinetic and hydrodynamic equation, Jour. Statist. Phys., 101 (2000), 1087-1136.doi: 10.1023/A:1026481706240.

    [3]

    A. V. Bobylev, A. Hansen, J. Piasecki and E. H. Hauge, From the Liouville equation to the generalized Boltzmann equation for magnetotransport in the 2D Lorentz model, Jour. Statist. Phys., 102 (2001), 1133-1150.doi: 10.1023/A:1004880010020.

    [4]

    E. A. Carlen, M. Carvalho, R. Esposito, J. L. Lebowitz and R. Marra, Free energy minimizers for a two-species model with segregation and liquid-vapor transition, Nonlinearity, 16 (2003), 1075-1105.doi: 10.1088/0951-7715/16/3/316.

    [5]

    C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Springer-Verlag, 1994.

    [6]

    L. Desvillettes and V. Ricci, Non-Markovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field, Bull. Sci. Math., 128 (2004), 39-46.doi: 10.1016/j.bulsci.2003.09.003.

    [7]

    R. Duan, T. Yang and C. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum, Journal of Mathematical Physics, 46 (2005), 253-277.doi: 10.1063/1.1899985.

    [8]

    R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Communications in Mathematical Physics, 277 (2008), 189-236.doi: 10.1007/s00220-007-0366-4.

    [9]

    R. Esposito, Y. Guo and R. Marra, Phase transition in a Vlasov-Boltzmann binary mixture, Commun. Math. Phys., 296 (2010), 1-33.doi: 10.1007/s00220-010-1009-8.

    [10]

    R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq regime, Jour. Stat. Phys., 90 (1998), 1129-1178.doi: 10.1023/A:1023223226585.

    [11]

    Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, Comm. Math. Phys., 218 (2001), 293-313.doi: 10.1007/s002200100391.

    [12]

    Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., LV (2002), 1104-1135.doi: 10.1002/cpa.10040.

    [13]

    Y. Guo, The Vlasov-Boltzmann-Maxwell system near Maxwellians, Invent. Math., 153 (2003), 593-630.doi: 10.1007/s00222-003-0301-z.

    [14]

    O. E. Lanford III, The evolution of large classical systems, in "Dynamical Systems, Theory and Applications,'' J. Moser ed., Lecture Notes in Physics, Springer Berlin, 35 (1975), 1-111.

    [15]

    S. Ukai, T. Yang and H. Zhao, Global solutions to the Boltzmann equation with external forces, Analysis and Applications (Singapore), 3 (2005), 157-193.doi: 10.1142/S0219530505000522.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return