June  2011, 4(2): 499-515. doi: 10.3934/krm.2011.4.499

Validity of the Boltzmann equation with an external force

1. 

Dipartimento di Matematica pura ed Applicata, Università dell’Aquila, Via Vetoio - Coppito, L’Aquila, 67100

2. 

Division of Applied Mathematics, Brown University, Providence, RI 02812, United States

3. 

Dipartimento di Fisica and Unità INFN, Università di Roma Tor Vergata, 00133 Roma

Received  December 2010 Published  April 2011

We establish local-in-time validity of the Boltzmann equation in the presence of an external force deriving from a $C^2$ potential.
Citation: Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499
References:
[1]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Rat. Mech. Anal., 198 (2010), 125.  doi: 10.1007/s00205-010-0292-z.  Google Scholar

[2]

S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction I: Derivation of kinetic and hydrodynamic equation,, Jour. Statist. Phys., 101 (2000), 1087.  doi: 10.1023/A:1026481706240.  Google Scholar

[3]

A. V. Bobylev, A. Hansen, J. Piasecki and E. H. Hauge, From the Liouville equation to the generalized Boltzmann equation for magnetotransport in the 2D Lorentz model,, Jour. Statist. Phys., 102 (2001), 1133.  doi: 10.1023/A:1004880010020.  Google Scholar

[4]

E. A. Carlen, M. Carvalho, R. Esposito, J. L. Lebowitz and R. Marra, Free energy minimizers for a two-species model with segregation and liquid-vapor transition,, Nonlinearity, 16 (2003), 1075.  doi: 10.1088/0951-7715/16/3/316.  Google Scholar

[5]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Springer-Verlag, (1994).   Google Scholar

[6]

L. Desvillettes and V. Ricci, Non-Markovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field,, Bull. Sci. Math., 128 (2004), 39.  doi: 10.1016/j.bulsci.2003.09.003.  Google Scholar

[7]

R. Duan, T. Yang and C. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum,, Journal of Mathematical Physics, 46 (2005), 253.  doi: 10.1063/1.1899985.  Google Scholar

[8]

R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications,, Communications in Mathematical Physics, 277 (2008), 189.  doi: 10.1007/s00220-007-0366-4.  Google Scholar

[9]

R. Esposito, Y. Guo and R. Marra, Phase transition in a Vlasov-Boltzmann binary mixture,, Commun. Math. Phys., 296 (2010), 1.  doi: 10.1007/s00220-010-1009-8.  Google Scholar

[10]

R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq regime,, Jour. Stat. Phys., 90 (1998), 1129.  doi: 10.1023/A:1023223226585.  Google Scholar

[11]

Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, , Comm. Math. Phys., 218 (2001), 293.  doi: 10.1007/s002200100391.  Google Scholar

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., LV (2002), 1104.  doi: 10.1002/cpa.10040.  Google Scholar

[13]

Y. Guo, The Vlasov-Boltzmann-Maxwell system near Maxwellians,, Invent. Math., 153 (2003), 593.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[14]

O. E. Lanford III, The evolution of large classical systems,, in, 35 (1975), 1.   Google Scholar

[15]

S. Ukai, T. Yang and H. Zhao, Global solutions to the Boltzmann equation with external forces,, Analysis and Applications (Singapore), 3 (2005), 157.  doi: 10.1142/S0219530505000522.  Google Scholar

show all references

References:
[1]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Rat. Mech. Anal., 198 (2010), 125.  doi: 10.1007/s00205-010-0292-z.  Google Scholar

[2]

S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction I: Derivation of kinetic and hydrodynamic equation,, Jour. Statist. Phys., 101 (2000), 1087.  doi: 10.1023/A:1026481706240.  Google Scholar

[3]

A. V. Bobylev, A. Hansen, J. Piasecki and E. H. Hauge, From the Liouville equation to the generalized Boltzmann equation for magnetotransport in the 2D Lorentz model,, Jour. Statist. Phys., 102 (2001), 1133.  doi: 10.1023/A:1004880010020.  Google Scholar

[4]

E. A. Carlen, M. Carvalho, R. Esposito, J. L. Lebowitz and R. Marra, Free energy minimizers for a two-species model with segregation and liquid-vapor transition,, Nonlinearity, 16 (2003), 1075.  doi: 10.1088/0951-7715/16/3/316.  Google Scholar

[5]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Springer-Verlag, (1994).   Google Scholar

[6]

L. Desvillettes and V. Ricci, Non-Markovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field,, Bull. Sci. Math., 128 (2004), 39.  doi: 10.1016/j.bulsci.2003.09.003.  Google Scholar

[7]

R. Duan, T. Yang and C. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum,, Journal of Mathematical Physics, 46 (2005), 253.  doi: 10.1063/1.1899985.  Google Scholar

[8]

R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications,, Communications in Mathematical Physics, 277 (2008), 189.  doi: 10.1007/s00220-007-0366-4.  Google Scholar

[9]

R. Esposito, Y. Guo and R. Marra, Phase transition in a Vlasov-Boltzmann binary mixture,, Commun. Math. Phys., 296 (2010), 1.  doi: 10.1007/s00220-010-1009-8.  Google Scholar

[10]

R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq regime,, Jour. Stat. Phys., 90 (1998), 1129.  doi: 10.1023/A:1023223226585.  Google Scholar

[11]

Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, , Comm. Math. Phys., 218 (2001), 293.  doi: 10.1007/s002200100391.  Google Scholar

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., LV (2002), 1104.  doi: 10.1002/cpa.10040.  Google Scholar

[13]

Y. Guo, The Vlasov-Boltzmann-Maxwell system near Maxwellians,, Invent. Math., 153 (2003), 593.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[14]

O. E. Lanford III, The evolution of large classical systems,, in, 35 (1975), 1.   Google Scholar

[15]

S. Ukai, T. Yang and H. Zhao, Global solutions to the Boltzmann equation with external forces,, Analysis and Applications (Singapore), 3 (2005), 157.  doi: 10.1142/S0219530505000522.  Google Scholar

[1]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[2]

Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811

[3]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[4]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[5]

Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174

[6]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[7]

Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic & Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007

[8]

Huaiyu Jian, Hongjie Ju, Wei Sun. Traveling fronts of curve flow with external force field. Communications on Pure & Applied Analysis, 2010, 9 (4) : 975-986. doi: 10.3934/cpaa.2010.9.975

[9]

Karsten Matthies, George Stone. Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3299-3355. doi: 10.3934/dcds.2018143

[10]

Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115

[11]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[12]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[13]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[14]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[15]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[16]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[17]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[18]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[19]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[20]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]