June  2011, 4(2): 499-515. doi: 10.3934/krm.2011.4.499

Validity of the Boltzmann equation with an external force

1. 

Dipartimento di Matematica pura ed Applicata, Università dell’Aquila, Via Vetoio - Coppito, L’Aquila, 67100

2. 

Division of Applied Mathematics, Brown University, Providence, RI 02812, United States

3. 

Dipartimento di Fisica and Unità INFN, Università di Roma Tor Vergata, 00133 Roma

Received  December 2010 Published  April 2011

We establish local-in-time validity of the Boltzmann equation in the presence of an external force deriving from a $C^2$ potential.
Citation: Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499
References:
[1]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Rat. Mech. Anal., 198 (2010), 125.  doi: 10.1007/s00205-010-0292-z.  Google Scholar

[2]

S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction I: Derivation of kinetic and hydrodynamic equation,, Jour. Statist. Phys., 101 (2000), 1087.  doi: 10.1023/A:1026481706240.  Google Scholar

[3]

A. V. Bobylev, A. Hansen, J. Piasecki and E. H. Hauge, From the Liouville equation to the generalized Boltzmann equation for magnetotransport in the 2D Lorentz model,, Jour. Statist. Phys., 102 (2001), 1133.  doi: 10.1023/A:1004880010020.  Google Scholar

[4]

E. A. Carlen, M. Carvalho, R. Esposito, J. L. Lebowitz and R. Marra, Free energy minimizers for a two-species model with segregation and liquid-vapor transition,, Nonlinearity, 16 (2003), 1075.  doi: 10.1088/0951-7715/16/3/316.  Google Scholar

[5]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Springer-Verlag, (1994).   Google Scholar

[6]

L. Desvillettes and V. Ricci, Non-Markovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field,, Bull. Sci. Math., 128 (2004), 39.  doi: 10.1016/j.bulsci.2003.09.003.  Google Scholar

[7]

R. Duan, T. Yang and C. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum,, Journal of Mathematical Physics, 46 (2005), 253.  doi: 10.1063/1.1899985.  Google Scholar

[8]

R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications,, Communications in Mathematical Physics, 277 (2008), 189.  doi: 10.1007/s00220-007-0366-4.  Google Scholar

[9]

R. Esposito, Y. Guo and R. Marra, Phase transition in a Vlasov-Boltzmann binary mixture,, Commun. Math. Phys., 296 (2010), 1.  doi: 10.1007/s00220-010-1009-8.  Google Scholar

[10]

R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq regime,, Jour. Stat. Phys., 90 (1998), 1129.  doi: 10.1023/A:1023223226585.  Google Scholar

[11]

Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, , Comm. Math. Phys., 218 (2001), 293.  doi: 10.1007/s002200100391.  Google Scholar

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., LV (2002), 1104.  doi: 10.1002/cpa.10040.  Google Scholar

[13]

Y. Guo, The Vlasov-Boltzmann-Maxwell system near Maxwellians,, Invent. Math., 153 (2003), 593.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[14]

O. E. Lanford III, The evolution of large classical systems,, in, 35 (1975), 1.   Google Scholar

[15]

S. Ukai, T. Yang and H. Zhao, Global solutions to the Boltzmann equation with external forces,, Analysis and Applications (Singapore), 3 (2005), 157.  doi: 10.1142/S0219530505000522.  Google Scholar

show all references

References:
[1]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Rat. Mech. Anal., 198 (2010), 125.  doi: 10.1007/s00205-010-0292-z.  Google Scholar

[2]

S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction I: Derivation of kinetic and hydrodynamic equation,, Jour. Statist. Phys., 101 (2000), 1087.  doi: 10.1023/A:1026481706240.  Google Scholar

[3]

A. V. Bobylev, A. Hansen, J. Piasecki and E. H. Hauge, From the Liouville equation to the generalized Boltzmann equation for magnetotransport in the 2D Lorentz model,, Jour. Statist. Phys., 102 (2001), 1133.  doi: 10.1023/A:1004880010020.  Google Scholar

[4]

E. A. Carlen, M. Carvalho, R. Esposito, J. L. Lebowitz and R. Marra, Free energy minimizers for a two-species model with segregation and liquid-vapor transition,, Nonlinearity, 16 (2003), 1075.  doi: 10.1088/0951-7715/16/3/316.  Google Scholar

[5]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Springer-Verlag, (1994).   Google Scholar

[6]

L. Desvillettes and V. Ricci, Non-Markovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field,, Bull. Sci. Math., 128 (2004), 39.  doi: 10.1016/j.bulsci.2003.09.003.  Google Scholar

[7]

R. Duan, T. Yang and C. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum,, Journal of Mathematical Physics, 46 (2005), 253.  doi: 10.1063/1.1899985.  Google Scholar

[8]

R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications,, Communications in Mathematical Physics, 277 (2008), 189.  doi: 10.1007/s00220-007-0366-4.  Google Scholar

[9]

R. Esposito, Y. Guo and R. Marra, Phase transition in a Vlasov-Boltzmann binary mixture,, Commun. Math. Phys., 296 (2010), 1.  doi: 10.1007/s00220-010-1009-8.  Google Scholar

[10]

R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq regime,, Jour. Stat. Phys., 90 (1998), 1129.  doi: 10.1023/A:1023223226585.  Google Scholar

[11]

Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, , Comm. Math. Phys., 218 (2001), 293.  doi: 10.1007/s002200100391.  Google Scholar

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., LV (2002), 1104.  doi: 10.1002/cpa.10040.  Google Scholar

[13]

Y. Guo, The Vlasov-Boltzmann-Maxwell system near Maxwellians,, Invent. Math., 153 (2003), 593.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[14]

O. E. Lanford III, The evolution of large classical systems,, in, 35 (1975), 1.   Google Scholar

[15]

S. Ukai, T. Yang and H. Zhao, Global solutions to the Boltzmann equation with external forces,, Analysis and Applications (Singapore), 3 (2005), 157.  doi: 10.1142/S0219530505000522.  Google Scholar

[1]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[2]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[3]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[4]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[5]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[17]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[18]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[19]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]