June  2011, 4(2): 517-530. doi: 10.3934/krm.2011.4.517

On kinetic flux vector splitting schemes for quantum Euler equations

1. 

Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI 53706, United States

2. 

Department of Mathematics, University of Wisconsin, Madison, WI 53706

Received  November 2010 Published  April 2011

The kinetic flux vector splitting (KFVS) scheme, when used for quantum Euler equations, as was done by Yang et al [22], requires the integration of the quantum Maxwellian (Bose-Einstein or Fermi-Dirac distribution), giving a numerical flux much more complicated than the classical counterpart. As a result, a nonlinear 2 by 2 system that connects the macroscopic quantities temperature and fugacity with density and internal energy needs to be inverted by iterative methods at every spatial point and every time step. In this paper, we propose to use a simple classical KFVS scheme for the quantum hydrodynamics based on the key observation that the quantum and classical Euler equations share the same form if the (quantum) internal energy rather than temperature is used in the flux. This motivates us to use a classical Maxwellian - that depends on the internal energy rather than temperature - instead of the quantum one in the construction of the scheme, yielding a KFVS which is purely classical. This greatly simplifies the numerical algorithm and reduces the computational cost. The proposed schemes are tested on a 1-D shock tube problem for the Bose and Fermi gases in both classical and nearly degenerate regimes.
Citation: Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic & Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517
References:
[1]

V. V. Aristov and F. G. Tcheremissine, Kinetic numerical method for rarefied and continuum gas flows,, in, 1 (1985), 269.   Google Scholar

[2]

C. Cercignani, "The Boltzmann Equation and Its Applications,", Springer-Verlag, (1988).   Google Scholar

[3]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,", 3rd edition, (1990).   Google Scholar

[4]

S. M. Deshpande, Kinetic theory based new upwind methods for inviscid compressible flows,, AIAA Paper 86-0275, (1986), 86.   Google Scholar

[5]

S. M. Deshpande and R. Raul, "Kinetic Theory Based Fluid-in-Cell Method for Eulerian Fluid Dynamics,", Report 82 FM 14, (1982).   Google Scholar

[6]

T. G. Elizarova and B. N. Chetverushkin, Kinetic-consistent finite-difference gas dynamic schemes,, Japan Soc. Comput. Fluid Dyn., (1989), 501.   Google Scholar

[7]

A. Harten, P. D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,, SIAM Rev., 25 (1983), 35.  doi: 10.1137/1025002.  Google Scholar

[8]

S. Jin and Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions,, Commun. Pure Appl. Math., 48 (1995), 235.  doi: 10.1002/cpa.3160480303.  Google Scholar

[9]

R. J. LeVeque, "Numerical Methods for Conservation Laws,", 2nd edition, (1992).   Google Scholar

[10]

L. W. Nordheim, On the kinetic method in the new statistics and its application in the electron theory of conductivity,, Proc. R. Soc. London, 119 (1928), 689.  doi: 10.1098/rspa.1928.0126.  Google Scholar

[11]

R. K. Pathria, "Statistical Mechanics,", 2$^{nd}$ edition, (1996).   Google Scholar

[12]

B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property,, SIAM J. Numer. Anal., 27 (1990), 1405.  doi: 10.1137/0727081.  Google Scholar

[13]

B. Perthame, Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions,, SIAM J. Numer. Anal., 29 (1992), 1.  doi: 10.1137/0729001.  Google Scholar

[14]

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes: The Art of Scientific Computing,", 3$^{rd}$ edition, (2007).   Google Scholar

[15]

D. I. Pullin, Direct simulation methods for compressible inviscid ideal-gas flow,, J. Comput. Phys., 34 (1980), 231.  doi: 10.1016/0021-9991(80)90107-2.  Google Scholar

[16]

R. D. Reitz, One-dimensional compressible gas dynamics calculations using the Boltzmann equation,, J. Comput. Phys., 42 (1981), 108.  doi: 10.1016/0021-9991(81)90235-7.  Google Scholar

[17]

J. Ross and J. G. Kirkwood, The statistical-mechanical theory of transport processes. VIII. Quantum theory of transport in gases,, J. Chem. Phys., 22 (1954), 1094.  doi: 10.1063/1.1740271.  Google Scholar

[18]

A. Sommerfeld, Zur elektronentheorie der metalle auf grund der Fermischen statistik,, Zeitschrift für Physik A Hadrons and Nuclei, 47 (1928), 1.   Google Scholar

[19]

E. A. Uehling, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. II,, Phys. Rev., 46 (1934), 917.  doi: 10.1103/PhysRev.46.917.  Google Scholar

[20]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I,, Phys. Rev., 43 (1933), 552.  doi: 10.1103/PhysRev.43.552.  Google Scholar

[21]

B. Van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme,, J. Comput. Phys., 14 (1974), 361.  doi: 10.1016/0021-9991(74)90019-9.  Google Scholar

[22]

J. Y. Yang, T. Y. Hsieh and Y. H. Shi, Kinetic flux vector splitting schemes for ideal quantum gas dynamics,, SIAM J. Sci. Comput., 29 (2007), 221.  doi: 10.1137/050646664.  Google Scholar

[23]

J. Y. Yang, T. Y. Hsieh, Y. H. Shi and K. Xu, High-order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics,, J. Comput. Phys., 227 (2007), 967.  doi: 10.1016/j.jcp.2007.08.014.  Google Scholar

show all references

References:
[1]

V. V. Aristov and F. G. Tcheremissine, Kinetic numerical method for rarefied and continuum gas flows,, in, 1 (1985), 269.   Google Scholar

[2]

C. Cercignani, "The Boltzmann Equation and Its Applications,", Springer-Verlag, (1988).   Google Scholar

[3]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,", 3rd edition, (1990).   Google Scholar

[4]

S. M. Deshpande, Kinetic theory based new upwind methods for inviscid compressible flows,, AIAA Paper 86-0275, (1986), 86.   Google Scholar

[5]

S. M. Deshpande and R. Raul, "Kinetic Theory Based Fluid-in-Cell Method for Eulerian Fluid Dynamics,", Report 82 FM 14, (1982).   Google Scholar

[6]

T. G. Elizarova and B. N. Chetverushkin, Kinetic-consistent finite-difference gas dynamic schemes,, Japan Soc. Comput. Fluid Dyn., (1989), 501.   Google Scholar

[7]

A. Harten, P. D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,, SIAM Rev., 25 (1983), 35.  doi: 10.1137/1025002.  Google Scholar

[8]

S. Jin and Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions,, Commun. Pure Appl. Math., 48 (1995), 235.  doi: 10.1002/cpa.3160480303.  Google Scholar

[9]

R. J. LeVeque, "Numerical Methods for Conservation Laws,", 2nd edition, (1992).   Google Scholar

[10]

L. W. Nordheim, On the kinetic method in the new statistics and its application in the electron theory of conductivity,, Proc. R. Soc. London, 119 (1928), 689.  doi: 10.1098/rspa.1928.0126.  Google Scholar

[11]

R. K. Pathria, "Statistical Mechanics,", 2$^{nd}$ edition, (1996).   Google Scholar

[12]

B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property,, SIAM J. Numer. Anal., 27 (1990), 1405.  doi: 10.1137/0727081.  Google Scholar

[13]

B. Perthame, Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions,, SIAM J. Numer. Anal., 29 (1992), 1.  doi: 10.1137/0729001.  Google Scholar

[14]

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes: The Art of Scientific Computing,", 3$^{rd}$ edition, (2007).   Google Scholar

[15]

D. I. Pullin, Direct simulation methods for compressible inviscid ideal-gas flow,, J. Comput. Phys., 34 (1980), 231.  doi: 10.1016/0021-9991(80)90107-2.  Google Scholar

[16]

R. D. Reitz, One-dimensional compressible gas dynamics calculations using the Boltzmann equation,, J. Comput. Phys., 42 (1981), 108.  doi: 10.1016/0021-9991(81)90235-7.  Google Scholar

[17]

J. Ross and J. G. Kirkwood, The statistical-mechanical theory of transport processes. VIII. Quantum theory of transport in gases,, J. Chem. Phys., 22 (1954), 1094.  doi: 10.1063/1.1740271.  Google Scholar

[18]

A. Sommerfeld, Zur elektronentheorie der metalle auf grund der Fermischen statistik,, Zeitschrift für Physik A Hadrons and Nuclei, 47 (1928), 1.   Google Scholar

[19]

E. A. Uehling, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. II,, Phys. Rev., 46 (1934), 917.  doi: 10.1103/PhysRev.46.917.  Google Scholar

[20]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I,, Phys. Rev., 43 (1933), 552.  doi: 10.1103/PhysRev.43.552.  Google Scholar

[21]

B. Van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme,, J. Comput. Phys., 14 (1974), 361.  doi: 10.1016/0021-9991(74)90019-9.  Google Scholar

[22]

J. Y. Yang, T. Y. Hsieh and Y. H. Shi, Kinetic flux vector splitting schemes for ideal quantum gas dynamics,, SIAM J. Sci. Comput., 29 (2007), 221.  doi: 10.1137/050646664.  Google Scholar

[23]

J. Y. Yang, T. Y. Hsieh, Y. H. Shi and K. Xu, High-order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics,, J. Comput. Phys., 227 (2007), 967.  doi: 10.1016/j.jcp.2007.08.014.  Google Scholar

[1]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[2]

Cheng Wang, Jian-Guo Liu. Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 201-228. doi: 10.3934/dcdsb.2003.3.201

[3]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[4]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[5]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[6]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020046

[7]

Thibaut Allemand. Derivation of a two-fluids model for a Bose gas from a quantum kinetic system. Kinetic & Related Models, 2009, 2 (2) : 379-402. doi: 10.3934/krm.2009.2.379

[8]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[9]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the quantum Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 273-294. doi: 10.3934/cpaa.2017013

[10]

Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006

[11]

Johannes Eilinghoff, Roland Schnaubelt. Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5685-5709. doi: 10.3934/dcds.2018248

[12]

Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1

[13]

Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119

[14]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[15]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[16]

Jin-Cheng Jiang, Chi-Kun Lin, Shuanglin Shao. On one dimensional quantum Zakharov system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5445-5475. doi: 10.3934/dcds.2016040

[17]

Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287

[18]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[19]

Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557

[20]

Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34.

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]