March  2011, 4(1): 53-85. doi: 10.3934/krm.2011.4.53

A hierarchy of models related to nanoflows and surface diffusion

1. 

Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501

2. 

Institut de Mathméatiques de Bordeaux, ENSEIRB-MATMECA, IPB, Université de Bordeaux, F-33405 Talence cedex, France

3. 

1-Université de Toulouse; UPS, INSA, UT1, UTM, Institut de Mathématiques de Toulouse, F-31062 Toulouse, France

Received  September 2010 Revised  October 2010 Published  January 2011

In last years a great interest was brought to molecular transport problems at nanoscales, such as surface diffusion or molecular flows in nano or sub-nano-channels. In a series of papers V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker proposed to use kinetic theory in order to analyze the mechanisms that determine mobility of molecules in nanoscale channels. This approach proved to be remarkably useful to give new insight on these issues, such as density dependence of the diffusion coefficient. In this paper we revisit these works to derive the kinetic and diffusion models introduced by V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker by using classical tools of kinetic theory such as scaling and systematic asymptotic analysis. Some results are extended to less restrictive hypothesis.
Citation: Kazuo Aoki, Pierre Charrier, Pierre Degond. A hierarchy of models related to nanoflows and surface diffusion. Kinetic & Related Models, 2011, 4 (1) : 53-85. doi: 10.3934/krm.2011.4.53
References:
[1]

K. Aoki and P. Degond, Homogenization of a flow in a periodic channel of small section,, Multiscale Model. Simul., 1 (2003), 304.  doi: 10.1137/S1540345902409931.  Google Scholar

[2]

K. Aoki, P. Degond, S. Takata and H. Yoshida, Diffusion models for Knudsen compressors,, Phys. Fluids, 19 (2007), 1.   Google Scholar

[3]

J. J. M. Beenakker, Reduced dimensionality in gases in nanopores,, Phys. Low-Dim. Struct., 10/11 (1995), 115.   Google Scholar

[4]

J. J. M. Beenakker and S. Yu. Krylov, One-dimensional surface diffusion: density dependence in a smooth potential,, J. Chem. Phys., 107 (1997), 4015.  doi: 10.1063/1.474757.  Google Scholar

[5]

J. J. M. Beenakker, V. D. Borman and S. Yu. Krylov, Molecular transport in the nanometer regime,, Phys. Rev. Lett., 72 (1994), 514.  doi: 10.1103/PhysRevLett.72.514.  Google Scholar

[6]

J. J. M. Beenakker, V. D. Borman and S. U. Krylov, Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving,, Chem. Phys. Letters, 232 (1995), 379.  doi: 10.1016/0009-2614(94)01372-3.  Google Scholar

[7]

V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Theory of nonequilibrium phenomena at a gas-solid interface,, Sov. Phys. JETP, 67 (1988), 2110.   Google Scholar

[8]

V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Fundamental role of unbound surface particles in transport phenomena along a gas-solid interface,, Sov. Phys. JETP, 70 (1990), 1013.   Google Scholar

[9]

P. Charrier and B. Dubroca, Asymptotic transport models for heat and mass transfer in reactive porous media,, Multiscale Model. Simul., 2 (2003), 124.  doi: 10.1137/S1540345902411736.  Google Scholar

[10]

P. Degond, Transport of trapped particles in a surface potential,, in, XIV (2002), 273.   Google Scholar

[11]

P. Degond, C. Parzani and M.-H. Vignal, A Boltzmann model for trapped particles in a surface potential,, Multiscale Model. Simul., 5 (2006), 364.  doi: 10.1137/050642897.  Google Scholar

[12]

E. Frenod and K. Hamdache, Homogenisation of transport kinetic equations with oscillating potentials,, Proceedings of the Royal Society of Edinburgh A, 126 (1996), 1247.   Google Scholar

[13]

J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy and O. Bakajin, Fast mass transport sub-2-nanometer carbon nanotubes,, Science, 312 (2006), 1034.  doi: 10.1126/science.1126298.  Google Scholar

[14]

G. Karniadakis, A. Beskok and N. Aluru, "Microflows and Nanoflows,", Springer-Verlag, (2005).   Google Scholar

[15]

S. Yu. Krylov, A. V. Prosyanov and J. J. M. Beenakker, One dimensional surface diffusion. II. Density dependence in a corrugated potential,, J. Chem. Phys., 107 (1997), 6970.  doi: 10.1063/1.474937.  Google Scholar

[16]

S. Yu. Krylov, Molecular transport in sub-nano-scale systems,, in, (2002).   Google Scholar

[17]

Y. Sone, "Kinetic Theory and Fluid Dynamics,", Birkäuser, (2002).   Google Scholar

[18]

Y. Sone, "Molecular Gas Dynamics: Theory, Techniques, and Applications,", Birkäuser, (2007).   Google Scholar

show all references

References:
[1]

K. Aoki and P. Degond, Homogenization of a flow in a periodic channel of small section,, Multiscale Model. Simul., 1 (2003), 304.  doi: 10.1137/S1540345902409931.  Google Scholar

[2]

K. Aoki, P. Degond, S. Takata and H. Yoshida, Diffusion models for Knudsen compressors,, Phys. Fluids, 19 (2007), 1.   Google Scholar

[3]

J. J. M. Beenakker, Reduced dimensionality in gases in nanopores,, Phys. Low-Dim. Struct., 10/11 (1995), 115.   Google Scholar

[4]

J. J. M. Beenakker and S. Yu. Krylov, One-dimensional surface diffusion: density dependence in a smooth potential,, J. Chem. Phys., 107 (1997), 4015.  doi: 10.1063/1.474757.  Google Scholar

[5]

J. J. M. Beenakker, V. D. Borman and S. Yu. Krylov, Molecular transport in the nanometer regime,, Phys. Rev. Lett., 72 (1994), 514.  doi: 10.1103/PhysRevLett.72.514.  Google Scholar

[6]

J. J. M. Beenakker, V. D. Borman and S. U. Krylov, Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving,, Chem. Phys. Letters, 232 (1995), 379.  doi: 10.1016/0009-2614(94)01372-3.  Google Scholar

[7]

V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Theory of nonequilibrium phenomena at a gas-solid interface,, Sov. Phys. JETP, 67 (1988), 2110.   Google Scholar

[8]

V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Fundamental role of unbound surface particles in transport phenomena along a gas-solid interface,, Sov. Phys. JETP, 70 (1990), 1013.   Google Scholar

[9]

P. Charrier and B. Dubroca, Asymptotic transport models for heat and mass transfer in reactive porous media,, Multiscale Model. Simul., 2 (2003), 124.  doi: 10.1137/S1540345902411736.  Google Scholar

[10]

P. Degond, Transport of trapped particles in a surface potential,, in, XIV (2002), 273.   Google Scholar

[11]

P. Degond, C. Parzani and M.-H. Vignal, A Boltzmann model for trapped particles in a surface potential,, Multiscale Model. Simul., 5 (2006), 364.  doi: 10.1137/050642897.  Google Scholar

[12]

E. Frenod and K. Hamdache, Homogenisation of transport kinetic equations with oscillating potentials,, Proceedings of the Royal Society of Edinburgh A, 126 (1996), 1247.   Google Scholar

[13]

J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy and O. Bakajin, Fast mass transport sub-2-nanometer carbon nanotubes,, Science, 312 (2006), 1034.  doi: 10.1126/science.1126298.  Google Scholar

[14]

G. Karniadakis, A. Beskok and N. Aluru, "Microflows and Nanoflows,", Springer-Verlag, (2005).   Google Scholar

[15]

S. Yu. Krylov, A. V. Prosyanov and J. J. M. Beenakker, One dimensional surface diffusion. II. Density dependence in a corrugated potential,, J. Chem. Phys., 107 (1997), 6970.  doi: 10.1063/1.474937.  Google Scholar

[16]

S. Yu. Krylov, Molecular transport in sub-nano-scale systems,, in, (2002).   Google Scholar

[17]

Y. Sone, "Kinetic Theory and Fluid Dynamics,", Birkäuser, (2002).   Google Scholar

[18]

Y. Sone, "Molecular Gas Dynamics: Theory, Techniques, and Applications,", Birkäuser, (2007).   Google Scholar

[1]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[2]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[3]

Arnaud Debussche, Julien Vovelle. Diffusion limit for a stochastic kinetic problem. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2305-2326. doi: 10.3934/cpaa.2012.11.2305

[4]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

[5]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[6]

Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic & Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030

[7]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[8]

Laurent Boudin, Bérénice Grec, Milana Pavić, Francesco Salvarani. Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic & Related Models, 2013, 6 (1) : 137-157. doi: 10.3934/krm.2013.6.137

[9]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[10]

José A. Carrillo, M. R. D’Orsogna, V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinetic & Related Models, 2009, 2 (2) : 363-378. doi: 10.3934/krm.2009.2.363

[11]

Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic & Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004

[12]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic & Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[13]

Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic & Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049

[14]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[15]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[16]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[17]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic & Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[18]

Manuel Torrilhon. H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory. Kinetic & Related Models, 2012, 5 (1) : 185-201. doi: 10.3934/krm.2012.5.185

[19]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[20]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. Modeling chemotaxis from $L^2$--closure moments in kinetic theory of active particles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 847-863. doi: 10.3934/dcdsb.2013.18.847

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]