\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A hierarchy of models related to nanoflows and surface diffusion

Abstract Related Papers Cited by
  • In last years a great interest was brought to molecular transport problems at nanoscales, such as surface diffusion or molecular flows in nano or sub-nano-channels. In a series of papers V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker proposed to use kinetic theory in order to analyze the mechanisms that determine mobility of molecules in nanoscale channels. This approach proved to be remarkably useful to give new insight on these issues, such as density dependence of the diffusion coefficient. In this paper we revisit these works to derive the kinetic and diffusion models introduced by V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker by using classical tools of kinetic theory such as scaling and systematic asymptotic analysis. Some results are extended to less restrictive hypothesis.
    Mathematics Subject Classification: Primary: 82C40, 76P05, 41A60, 82D05; Secondary: 74A25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Aoki and P. Degond, Homogenization of a flow in a periodic channel of small section, Multiscale Model. Simul., 1 (2003), 304-334.doi: 10.1137/S1540345902409931.

    [2]

    K. Aoki, P. Degond, S. Takata and H. Yoshida, Diffusion models for Knudsen compressors, Phys. Fluids, 19 (2007), 117103: 1-20.

    [3]

    J. J. M. Beenakker, Reduced dimensionality in gases in nanopores, Phys. Low-Dim. Struct., 10/11 (1995), 115-124.

    [4]

    J. J. M. Beenakker and S. Yu. Krylov, One-dimensional surface diffusion: density dependence in a smooth potential, J. Chem. Phys., 107 (1997), 4015-4023.doi: 10.1063/1.474757.

    [5]

    J. J. M. Beenakker, V. D. Borman and S. Yu. Krylov, Molecular transport in the nanometer regime, Phys. Rev. Lett., 72 (1994), 514-517.doi: 10.1103/PhysRevLett.72.514.

    [6]

    J. J. M. Beenakker, V. D. Borman and S. U. Krylov, Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving, Chem. Phys. Letters, 232 (1995), 379-382.doi: 10.1016/0009-2614(94)01372-3.

    [7]

    V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Theory of nonequilibrium phenomena at a gas-solid interface, Sov. Phys. JETP, 67 (1988), 2110-2121.

    [8]

    V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Fundamental role of unbound surface particles in transport phenomena along a gas-solid interface, Sov. Phys. JETP, 70 (1990), 1013-1022.

    [9]

    P. Charrier and B. Dubroca, Asymptotic transport models for heat and mass transfer in reactive porous media, Multiscale Model. Simul., 2 (2003), 124-157.doi: 10.1137/S1540345902411736.

    [10]

    P. Degond, Transport of trapped particles in a surface potential, in "Nonlinear Partial Differential Equations and Their Applications," Collège de France Seminar, North Holland, XIV (2002), 273-296.

    [11]

    P. Degond, C. Parzani and M.-H. Vignal, A Boltzmann model for trapped particles in a surface potential, Multiscale Model. Simul., 5 (2006), 364-392.doi: 10.1137/050642897.

    [12]

    E. Frenod and K. Hamdache, Homogenisation of transport kinetic equations with oscillating potentials, Proceedings of the Royal Society of Edinburgh A, 126 (1996), 1247-1275.

    [13]

    J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy and O. Bakajin, Fast mass transport sub-2-nanometer carbon nanotubes, Science, 312 (2006), 1034-1037.doi: 10.1126/science.1126298.

    [14]

    G. Karniadakis, A. Beskok and N. Aluru, "Microflows and Nanoflows," Springer-Verlag, 2005.

    [15]

    S. Yu. Krylov, A. V. Prosyanov and J. J. M. Beenakker, One dimensional surface diffusion. II. Density dependence in a corrugated potential, J. Chem. Phys., 107 (1997), 6970-6979.doi: 10.1063/1.474937.

    [16]

    S. Yu. Krylov, Molecular transport in sub-nano-scale systems, in "Rarefied Gas Dynamics,'' A. D. Ketsdever and E. P. Muntz (eds.), Am. Inst. Phys., (2002).

    [17]

    Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkäuser, 2002.

    [18]

    Y. Sone, "Molecular Gas Dynamics: Theory, Techniques, and Applications," Birkäuser, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return