June  2011, 4(2): 531-547. doi: 10.3934/krm.2011.4.531

Decay property for a plate equation with memory-type dissipation

1. 

Department of Mathematics, North China Electric Power University, Beijing 102208, China

2. 

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395

Received  September 2010 Revised  December 2010 Published  April 2011

In this paper we focus on the initial value problem of the semi-linear plate equation with memory in multi-dimensions $(n\geq1)$, the decay structure of which is of regularity-loss property. By using Fourier transform and Laplace transform, we obtain the fundamental solutions and thus the solution to the corresponding linear problem. Appealing to the point-wise estimate in the Fourier space of solutions to the linear problem, we get estimates and properties of solution operators, by exploiting which decay estimates of solutions to the linear problem are obtained. Also by introducing a set of time-weighted Sobolev spaces and using the contraction mapping theorem, we obtain the global in-time existence and the optimal decay estimates of solutions to the semi-linear problem under smallness assumption on the initial data.
Citation: Yongqin Liu, Shuichi Kawashima. Decay property for a plate equation with memory-type dissipation. Kinetic and Related Models, 2011, 4 (2) : 531-547. doi: 10.3934/krm.2011.4.531
References:
[1]

M. E. Bradley and S. Lenhart, Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic J. Differential Equations, 2001 (2001), 1-15.

[2]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Analysis, 64 (2006), 92-108. doi: 10.1016/j.na.2005.06.010.

[3]

R. C. Charão, E. Bisognin, V. Bisognin and A. F. Pazoto, Asymptotic behavior for a dissipative plate equation in $R^N$ with periodic coefficients, Electronic J. Differential Equations, 46 (2008), 23 pp.

[4]

C. R. da Luz and R. C. Charão, Asymptotic properties for a semi-linear plate equation in unbounded domains, J. Hyperbolic Differential Equations, 6 (2009), 269-294. doi: 10.1142/S0219891609001824.

[5]

P. M. N. Dharmawardane, J. E. Muñoz Rivera and S. Kawashima, Decay property for second order hyperbolic systems of viscoelastic materials, J. Math. Anal. Appl., 366 (2010), 621-635. doi: 10.1016/j.jmaa.2009.12.019.

[6]

A. D. Drozdov and V. B. Kolmanovskii, "Stability in Viscoelasticity,", North-Holland Publishing Co., Amsterdam, 1994., 38 (). 

[7]

M. Fabrizio and B. Lazzari, On the existence and the asymptotic stability of solutions for linear viscoelastic solids, Arch. Rational Mech. Anal., 116 (1991), 139-152. doi: 10.1007/BF00375589.

[8]

T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Meth. Appl. Sci., 16 (2006), 1839-1859. doi: 10.1142/S021820250600173X.

[9]

K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Meth. Appl. Sci., 18 (2008), 1001-1025. doi: 10.1142/S0218202508002930.

[10]

Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139.

[11]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermo-viscoelasticity, Quart. Appl. Math., 54 (1996), 21-31.

[12]

Z. Liu and S. Zheng, "Semi-Groups Associated with Dissipative Systems," Chapman $&$ Hall/CRC, London, 1999.

[13]

J. E. Muñoz Rivera, Asymptotic behavior in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.

[14]

J. E. Muñoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704. doi: 10.1016/S0022-247X(03)00511-0.

[15]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. Syst., 9 (2003), 1625-1639. doi: 10.3934/dcds.2003.9.1625.

[16]

A. F. Pazoto, J. C. Vila Bravo and J. E. Muñoz Rivera, Asymptotic stability of semi-groups associated to linear weak dissipative systems, Math. Computer Modeling, 40 (2004), 387-392. doi: 10.1016/j.mcm.2003.10.048.

[17]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 7 (2010), 471-501. doi: 10.1142/S0219891610002207.

[18]

X. Zhang and E. Zuazua, On the optimality of the observability inequalities for Kirchhoff plate systems with potentials in unbounded domains,, Springer, 2008, 233--243., ().  doi: 10.1007/978-3-540-75712-2_19.

show all references

References:
[1]

M. E. Bradley and S. Lenhart, Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic J. Differential Equations, 2001 (2001), 1-15.

[2]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Analysis, 64 (2006), 92-108. doi: 10.1016/j.na.2005.06.010.

[3]

R. C. Charão, E. Bisognin, V. Bisognin and A. F. Pazoto, Asymptotic behavior for a dissipative plate equation in $R^N$ with periodic coefficients, Electronic J. Differential Equations, 46 (2008), 23 pp.

[4]

C. R. da Luz and R. C. Charão, Asymptotic properties for a semi-linear plate equation in unbounded domains, J. Hyperbolic Differential Equations, 6 (2009), 269-294. doi: 10.1142/S0219891609001824.

[5]

P. M. N. Dharmawardane, J. E. Muñoz Rivera and S. Kawashima, Decay property for second order hyperbolic systems of viscoelastic materials, J. Math. Anal. Appl., 366 (2010), 621-635. doi: 10.1016/j.jmaa.2009.12.019.

[6]

A. D. Drozdov and V. B. Kolmanovskii, "Stability in Viscoelasticity,", North-Holland Publishing Co., Amsterdam, 1994., 38 (). 

[7]

M. Fabrizio and B. Lazzari, On the existence and the asymptotic stability of solutions for linear viscoelastic solids, Arch. Rational Mech. Anal., 116 (1991), 139-152. doi: 10.1007/BF00375589.

[8]

T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Meth. Appl. Sci., 16 (2006), 1839-1859. doi: 10.1142/S021820250600173X.

[9]

K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Meth. Appl. Sci., 18 (2008), 1001-1025. doi: 10.1142/S0218202508002930.

[10]

Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139.

[11]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermo-viscoelasticity, Quart. Appl. Math., 54 (1996), 21-31.

[12]

Z. Liu and S. Zheng, "Semi-Groups Associated with Dissipative Systems," Chapman $&$ Hall/CRC, London, 1999.

[13]

J. E. Muñoz Rivera, Asymptotic behavior in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.

[14]

J. E. Muñoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704. doi: 10.1016/S0022-247X(03)00511-0.

[15]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. Syst., 9 (2003), 1625-1639. doi: 10.3934/dcds.2003.9.1625.

[16]

A. F. Pazoto, J. C. Vila Bravo and J. E. Muñoz Rivera, Asymptotic stability of semi-groups associated to linear weak dissipative systems, Math. Computer Modeling, 40 (2004), 387-392. doi: 10.1016/j.mcm.2003.10.048.

[17]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 7 (2010), 471-501. doi: 10.1142/S0219891610002207.

[18]

X. Zhang and E. Zuazua, On the optimality of the observability inequalities for Kirchhoff plate systems with potentials in unbounded domains,, Springer, 2008, 233--243., ().  doi: 10.1007/978-3-540-75712-2_19.

[1]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure and Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[2]

Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197

[3]

Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307

[4]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic and Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[5]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure and Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[6]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial and Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[7]

Baowei Feng, Abdelaziz Soufyane. New general decay results for a von Karman plate equation with memory-type boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1757-1774. doi: 10.3934/dcds.2020092

[8]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022046

[9]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[10]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[11]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293

[12]

Petteri Harjulehto, Peter Hästö, Juha Tiirola. Point-wise behavior of the Geman--McClure and the Hebert--Leahy image restoration models. Inverse Problems and Imaging, 2015, 9 (3) : 835-851. doi: 10.3934/ipi.2015.9.835

[13]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[14]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[15]

Jason R. Morris. A Sobolev space approach for global solutions to certain semi-linear heat equations in bounded domains. Conference Publications, 2009, 2009 (Special) : 574-582. doi: 10.3934/proc.2009.2009.574

[16]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[17]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[18]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[19]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[20]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (105)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]