June  2011, 4(2): 569-588. doi: 10.3934/krm.2011.4.569

Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics

1. 

Research Institute of Nonlinear Partial Differential Equations, Organization for University Research Initiatives, Waseda University, Tokyo 169-8555, Japan

Received  February 2010 Revised  November 2010 Published  April 2011

The main concern of the present paper is to analyze a sheath formed around a surface of a material with which plasma contacts. Here, for a formation of the sheath, the Bohm criterion requires the velocity of positive ions should be faster than a certain physical constant. The behavior of positive ions in plasma is governed by the Euler-Poisson equations. Mathematically, the sheath is regarded as a special stationary solution. We first show that the Bohm criterion gives a sufficient condition for an existence of the stationary solution by using the phase plane analysis. Then it is shown that the stationary solution is time asymptotically stable provided that an initial perturbation is sufficiently small in the weighted Sobolev space. Moreover we obtain the convergence rate of the time global solution towards the stationary solution subject to the decay rate of the initial perturbation. These theorems are proved by a weighted energy method.
Citation: Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic & Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569
References:
[1]

A. Ambroso, Stability for solutions of a stationary Euler-Poisson problem,, Math. Models Methods Appl. Sci., 16 (2006), 1817.  doi: 10.1142/S0218202506001728.  Google Scholar

[2]

A. Ambroso, F. Méhats and P.-A. Raviart, On singular perturbation problems for the nonlinear Poisson equation,, Asympt. Anal., 25 (2001), 39.   Google Scholar

[3]

F. F. Chen, "Introduction to Plasma Physics and Controlled Fusion,'', 2$^nd$ edition, (1984).   Google Scholar

[4]

S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis of an isothermal Euler-Poisson model,, Ann. Fac. Sci. Toulouse Math., 5 (1996), 599.   Google Scholar

[5]

S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit,, Asymptotic Anal., 11 (1995), 209.   Google Scholar

[6]

P. Degond and P. Markowich, On a one-dimensional steady-state hydrodynamic model,, Appl. Math. Lett., 3 (1990), 25.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[7]

S.-H. Ha and M. Slemrod, Global existence of plasma ion-sheaths and their dynamics,, Comm. Math. Phys., 238 (2003), 149.   Google Scholar

[8]

Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions,, Arch. Ration. Mech. Anal., 179 (2006), 1.  doi: 10.1007/s00205-005-0369-2.  Google Scholar

[9]

T. Kato, Linear evolution equations of "hyperbolic'' type,, J. Math. Soc. Japan., 25 (1973), 648.  doi: 10.2969/jmsj/02540648.  Google Scholar

[10]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[11]

S. Kawashima, Y. Nikkuni and S. Nishibata, Large-time behavior of solutions to hyperbolic-elliptic coupled systems,, Arch. Ration. Mech. Anal., 170 (2003), 297.  doi: 10.1007/s00205-003-0273-6.  Google Scholar

[12]

M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing,'', 2$^{nd}$ edition, (2005).  doi: 10.1002/0471724254.  Google Scholar

[13]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differ. Equ., 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[14]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors,, Osaka J. Math., 44 (2007), 639.   Google Scholar

[15]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors,, Arch. Ration. Mech. Anal., 192 (2009), 187.  doi: 10.1007/s00205-008-0129-1.  Google Scholar

[16]

S. Nishibata and M. Suzuki, Relaxation limit and initial layer to hydrodynamic models for semiconductors,, J. Differ. Equ., 249 (2010), 1385.  doi: 10.1016/j.jde.2010.06.008.  Google Scholar

[17]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107.   Google Scholar

[18]

M. Slemrod, The radio-frequency driven plasma sheath: asymptotics and analysis,, SIAM J. Appl. Math., 63 (2003), 1737.  doi: 10.1137/S0036139902411831.  Google Scholar

[19]

N. Sternberg and V. A. Godyak, Solving the mathematical model of the electrode sheath in symmetrically driven rf discharges,, J. Comput. Phys., 111 (1994), 347.  doi: 10.1006/jcph.1994.1068.  Google Scholar

[20]

Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows,, Nonlinearity, 17 (2004), 835.  doi: 10.1088/0951-7715/17/3/006.  Google Scholar

[21]

K.-U. Riemann, The Bohm criterion and sheath formation. Initial value problems,, J. Phys. D: Appl. Phys., 24 (1991), 493.  doi: 10.1088/0022-3727/24/4/001.  Google Scholar

[22]

M.-H. Vignal, A boundary layer problem for an asymptotic preserving scheme in the quasi-neutral limit for the Euler-Poisson system,, SIAM J. Appl. Math., 70 (2010), 1761.  doi: 10.1137/070703272.  Google Scholar

show all references

References:
[1]

A. Ambroso, Stability for solutions of a stationary Euler-Poisson problem,, Math. Models Methods Appl. Sci., 16 (2006), 1817.  doi: 10.1142/S0218202506001728.  Google Scholar

[2]

A. Ambroso, F. Méhats and P.-A. Raviart, On singular perturbation problems for the nonlinear Poisson equation,, Asympt. Anal., 25 (2001), 39.   Google Scholar

[3]

F. F. Chen, "Introduction to Plasma Physics and Controlled Fusion,'', 2$^nd$ edition, (1984).   Google Scholar

[4]

S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis of an isothermal Euler-Poisson model,, Ann. Fac. Sci. Toulouse Math., 5 (1996), 599.   Google Scholar

[5]

S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit,, Asymptotic Anal., 11 (1995), 209.   Google Scholar

[6]

P. Degond and P. Markowich, On a one-dimensional steady-state hydrodynamic model,, Appl. Math. Lett., 3 (1990), 25.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[7]

S.-H. Ha and M. Slemrod, Global existence of plasma ion-sheaths and their dynamics,, Comm. Math. Phys., 238 (2003), 149.   Google Scholar

[8]

Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions,, Arch. Ration. Mech. Anal., 179 (2006), 1.  doi: 10.1007/s00205-005-0369-2.  Google Scholar

[9]

T. Kato, Linear evolution equations of "hyperbolic'' type,, J. Math. Soc. Japan., 25 (1973), 648.  doi: 10.2969/jmsj/02540648.  Google Scholar

[10]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[11]

S. Kawashima, Y. Nikkuni and S. Nishibata, Large-time behavior of solutions to hyperbolic-elliptic coupled systems,, Arch. Ration. Mech. Anal., 170 (2003), 297.  doi: 10.1007/s00205-003-0273-6.  Google Scholar

[12]

M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing,'', 2$^{nd}$ edition, (2005).  doi: 10.1002/0471724254.  Google Scholar

[13]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differ. Equ., 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[14]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors,, Osaka J. Math., 44 (2007), 639.   Google Scholar

[15]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors,, Arch. Ration. Mech. Anal., 192 (2009), 187.  doi: 10.1007/s00205-008-0129-1.  Google Scholar

[16]

S. Nishibata and M. Suzuki, Relaxation limit and initial layer to hydrodynamic models for semiconductors,, J. Differ. Equ., 249 (2010), 1385.  doi: 10.1016/j.jde.2010.06.008.  Google Scholar

[17]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107.   Google Scholar

[18]

M. Slemrod, The radio-frequency driven plasma sheath: asymptotics and analysis,, SIAM J. Appl. Math., 63 (2003), 1737.  doi: 10.1137/S0036139902411831.  Google Scholar

[19]

N. Sternberg and V. A. Godyak, Solving the mathematical model of the electrode sheath in symmetrically driven rf discharges,, J. Comput. Phys., 111 (1994), 347.  doi: 10.1006/jcph.1994.1068.  Google Scholar

[20]

Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows,, Nonlinearity, 17 (2004), 835.  doi: 10.1088/0951-7715/17/3/006.  Google Scholar

[21]

K.-U. Riemann, The Bohm criterion and sheath formation. Initial value problems,, J. Phys. D: Appl. Phys., 24 (1991), 493.  doi: 10.1088/0022-3727/24/4/001.  Google Scholar

[22]

M.-H. Vignal, A boundary layer problem for an asymptotic preserving scheme in the quasi-neutral limit for the Euler-Poisson system,, SIAM J. Appl. Math., 70 (2010), 1761.  doi: 10.1137/070703272.  Google Scholar

[1]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[2]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[5]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[9]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[10]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[11]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[20]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]