June  2011, 4(2): 569-588. doi: 10.3934/krm.2011.4.569

Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics

1. 

Research Institute of Nonlinear Partial Differential Equations, Organization for University Research Initiatives, Waseda University, Tokyo 169-8555, Japan

Received  February 2010 Revised  November 2010 Published  April 2011

The main concern of the present paper is to analyze a sheath formed around a surface of a material with which plasma contacts. Here, for a formation of the sheath, the Bohm criterion requires the velocity of positive ions should be faster than a certain physical constant. The behavior of positive ions in plasma is governed by the Euler-Poisson equations. Mathematically, the sheath is regarded as a special stationary solution. We first show that the Bohm criterion gives a sufficient condition for an existence of the stationary solution by using the phase plane analysis. Then it is shown that the stationary solution is time asymptotically stable provided that an initial perturbation is sufficiently small in the weighted Sobolev space. Moreover we obtain the convergence rate of the time global solution towards the stationary solution subject to the decay rate of the initial perturbation. These theorems are proved by a weighted energy method.
Citation: Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic & Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569
References:
[1]

A. Ambroso, Stability for solutions of a stationary Euler-Poisson problem,, Math. Models Methods Appl. Sci., 16 (2006), 1817.  doi: 10.1142/S0218202506001728.  Google Scholar

[2]

A. Ambroso, F. Méhats and P.-A. Raviart, On singular perturbation problems for the nonlinear Poisson equation,, Asympt. Anal., 25 (2001), 39.   Google Scholar

[3]

F. F. Chen, "Introduction to Plasma Physics and Controlled Fusion,'', 2$^nd$ edition, (1984).   Google Scholar

[4]

S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis of an isothermal Euler-Poisson model,, Ann. Fac. Sci. Toulouse Math., 5 (1996), 599.   Google Scholar

[5]

S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit,, Asymptotic Anal., 11 (1995), 209.   Google Scholar

[6]

P. Degond and P. Markowich, On a one-dimensional steady-state hydrodynamic model,, Appl. Math. Lett., 3 (1990), 25.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[7]

S.-H. Ha and M. Slemrod, Global existence of plasma ion-sheaths and their dynamics,, Comm. Math. Phys., 238 (2003), 149.   Google Scholar

[8]

Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions,, Arch. Ration. Mech. Anal., 179 (2006), 1.  doi: 10.1007/s00205-005-0369-2.  Google Scholar

[9]

T. Kato, Linear evolution equations of "hyperbolic'' type,, J. Math. Soc. Japan., 25 (1973), 648.  doi: 10.2969/jmsj/02540648.  Google Scholar

[10]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[11]

S. Kawashima, Y. Nikkuni and S. Nishibata, Large-time behavior of solutions to hyperbolic-elliptic coupled systems,, Arch. Ration. Mech. Anal., 170 (2003), 297.  doi: 10.1007/s00205-003-0273-6.  Google Scholar

[12]

M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing,'', 2$^{nd}$ edition, (2005).  doi: 10.1002/0471724254.  Google Scholar

[13]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differ. Equ., 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[14]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors,, Osaka J. Math., 44 (2007), 639.   Google Scholar

[15]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors,, Arch. Ration. Mech. Anal., 192 (2009), 187.  doi: 10.1007/s00205-008-0129-1.  Google Scholar

[16]

S. Nishibata and M. Suzuki, Relaxation limit and initial layer to hydrodynamic models for semiconductors,, J. Differ. Equ., 249 (2010), 1385.  doi: 10.1016/j.jde.2010.06.008.  Google Scholar

[17]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107.   Google Scholar

[18]

M. Slemrod, The radio-frequency driven plasma sheath: asymptotics and analysis,, SIAM J. Appl. Math., 63 (2003), 1737.  doi: 10.1137/S0036139902411831.  Google Scholar

[19]

N. Sternberg and V. A. Godyak, Solving the mathematical model of the electrode sheath in symmetrically driven rf discharges,, J. Comput. Phys., 111 (1994), 347.  doi: 10.1006/jcph.1994.1068.  Google Scholar

[20]

Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows,, Nonlinearity, 17 (2004), 835.  doi: 10.1088/0951-7715/17/3/006.  Google Scholar

[21]

K.-U. Riemann, The Bohm criterion and sheath formation. Initial value problems,, J. Phys. D: Appl. Phys., 24 (1991), 493.  doi: 10.1088/0022-3727/24/4/001.  Google Scholar

[22]

M.-H. Vignal, A boundary layer problem for an asymptotic preserving scheme in the quasi-neutral limit for the Euler-Poisson system,, SIAM J. Appl. Math., 70 (2010), 1761.  doi: 10.1137/070703272.  Google Scholar

show all references

References:
[1]

A. Ambroso, Stability for solutions of a stationary Euler-Poisson problem,, Math. Models Methods Appl. Sci., 16 (2006), 1817.  doi: 10.1142/S0218202506001728.  Google Scholar

[2]

A. Ambroso, F. Méhats and P.-A. Raviart, On singular perturbation problems for the nonlinear Poisson equation,, Asympt. Anal., 25 (2001), 39.   Google Scholar

[3]

F. F. Chen, "Introduction to Plasma Physics and Controlled Fusion,'', 2$^nd$ edition, (1984).   Google Scholar

[4]

S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis of an isothermal Euler-Poisson model,, Ann. Fac. Sci. Toulouse Math., 5 (1996), 599.   Google Scholar

[5]

S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit,, Asymptotic Anal., 11 (1995), 209.   Google Scholar

[6]

P. Degond and P. Markowich, On a one-dimensional steady-state hydrodynamic model,, Appl. Math. Lett., 3 (1990), 25.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[7]

S.-H. Ha and M. Slemrod, Global existence of plasma ion-sheaths and their dynamics,, Comm. Math. Phys., 238 (2003), 149.   Google Scholar

[8]

Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions,, Arch. Ration. Mech. Anal., 179 (2006), 1.  doi: 10.1007/s00205-005-0369-2.  Google Scholar

[9]

T. Kato, Linear evolution equations of "hyperbolic'' type,, J. Math. Soc. Japan., 25 (1973), 648.  doi: 10.2969/jmsj/02540648.  Google Scholar

[10]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[11]

S. Kawashima, Y. Nikkuni and S. Nishibata, Large-time behavior of solutions to hyperbolic-elliptic coupled systems,, Arch. Ration. Mech. Anal., 170 (2003), 297.  doi: 10.1007/s00205-003-0273-6.  Google Scholar

[12]

M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing,'', 2$^{nd}$ edition, (2005).  doi: 10.1002/0471724254.  Google Scholar

[13]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differ. Equ., 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[14]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors,, Osaka J. Math., 44 (2007), 639.   Google Scholar

[15]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors,, Arch. Ration. Mech. Anal., 192 (2009), 187.  doi: 10.1007/s00205-008-0129-1.  Google Scholar

[16]

S. Nishibata and M. Suzuki, Relaxation limit and initial layer to hydrodynamic models for semiconductors,, J. Differ. Equ., 249 (2010), 1385.  doi: 10.1016/j.jde.2010.06.008.  Google Scholar

[17]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107.   Google Scholar

[18]

M. Slemrod, The radio-frequency driven plasma sheath: asymptotics and analysis,, SIAM J. Appl. Math., 63 (2003), 1737.  doi: 10.1137/S0036139902411831.  Google Scholar

[19]

N. Sternberg and V. A. Godyak, Solving the mathematical model of the electrode sheath in symmetrically driven rf discharges,, J. Comput. Phys., 111 (1994), 347.  doi: 10.1006/jcph.1994.1068.  Google Scholar

[20]

Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows,, Nonlinearity, 17 (2004), 835.  doi: 10.1088/0951-7715/17/3/006.  Google Scholar

[21]

K.-U. Riemann, The Bohm criterion and sheath formation. Initial value problems,, J. Phys. D: Appl. Phys., 24 (1991), 493.  doi: 10.1088/0022-3727/24/4/001.  Google Scholar

[22]

M.-H. Vignal, A boundary layer problem for an asymptotic preserving scheme in the quasi-neutral limit for the Euler-Poisson system,, SIAM J. Appl. Math., 70 (2010), 1761.  doi: 10.1137/070703272.  Google Scholar

[1]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[2]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[3]

Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial & Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199

[4]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[5]

Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure & Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959

[6]

Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6979-6993. doi: 10.3934/dcds.2019240

[7]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic & Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[8]

Roman Czapla, Vladimir V. Mityushev. A criterion of collective behavior of bacteria. Mathematical Biosciences & Engineering, 2017, 14 (1) : 277-287. doi: 10.3934/mbe.2017018

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[11]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[12]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[13]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[14]

Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176

[15]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[16]

Shijin Deng. Large time behavior for the IBVP of the 3-D Nishida's model. Networks & Heterogeneous Media, 2010, 5 (1) : 133-142. doi: 10.3934/nhm.2010.5.133

[17]

Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077

[18]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[19]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019229

[20]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]