-
Previous Article
Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution
- KRM Home
- This Issue
-
Next Article
Non--local macroscopic models based on Gaussian closures for the Spizer-Härm regime
Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data
1. | Institute of Applied Physics and Computational Mathematics, Box 8009-28, Beijing 100088, China |
2. | Department of Mathematics, Nanjing University, Nanjing 210093 |
3. | Department of Mathematics and Institute of Mathematics and Interdisciplinary Science, Capital Normal University, Beijing 100037, China |
References:
[1] |
T. Alazard and R. Carles, Semi-classical limit of Schrödinger-Poisson equations in space dimension $n\geq 3$,, J. Differential Equations, 233 (2007), 241.
doi: 10.1016/j.jde.2006.10.003. |
[2] |
A. Arnold and F. Nier, The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case,, Math. Methods Appl. Sci., 14 (1991), 595.
doi: 10.1002/mma.1670140902. |
[3] |
P. Bechouche, N. J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal,, Comm. Pure Appl. Math., 54 (2001), 852.
doi: 10.1002/cpa.3004. |
[4] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737.
|
[5] |
F. Brezzi and P. A. Markowich, The three-dimensional Wigner-Poisson problem: Existence, Uniqueness and Approximation,, Math. Methods Appl. Sci., 14 (1991), 35.
doi: 10.1002/mma.1670140103. |
[6] |
F. Castella, "Effects disperifs pour les équations de Vlasov et de Schrödinger,", Ph.D. Thesis, (1997). Google Scholar |
[7] |
F. Castella, $L^2$ solutions to the Schrödinger-Poisson system: existence, uniqueness, time behavior and smoothing effects,, Math. Models Methods Appl. Sci., 7 (1997), 1051.
doi: 10.1142/S0218202597000530. |
[8] |
T. Cazanava, "An Introduction to Nonlinear Schödinger Equations,", Testos de Métodos Matemáticos, (1980). Google Scholar |
[9] |
E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time,, Proc. Amer. Math. Soc., 126 (1998), 523.
doi: 10.1090/S0002-9939-98-04164-1. |
[10] |
C. C. Hao and H. L. Li, On the initial value problem for the bipolar Schrödinger-Poisson systems,, J. Partial Differential Equations, 17 (2004), 283.
|
[11] |
C. C. Hao, L. Hsiao and H. L. Li, Modified scattering for bipolar nonlinear Schrödiner-Poisson equations,, Math. Models Methods Appl. Sci., 14 (2004), 1481.
doi: 10.1142/S0218202504003684. |
[12] |
A. Jüngel and S. Wang, Convergence of nonlinear Schrödinger-Poisson system to the compressible Euler equations,, Comm. Partial Differential Equations, 28 (2003), 1005.
|
[13] |
T. Kato, Nonstationary flows of viscous and ideal fluids in $R$$^3$,, J. Funct. Anal., 9 (1972), 296.
doi: 10.1016/0022-1236(72)90003-1. |
[14] |
M. De Leo and D. Rial, Well posedness and smoothing effect of Schrödinger-Poisson equation,, J. Math. Phys., 48 (2007).
|
[15] |
H. L. Li and C.-K. Lin, Semiclassical limit and well-poseness of nonlinear Schrödinger-Poisson systems,, Electron. J. Differential Equations, 2003 ().
|
[16] |
P.-L. Lions, "Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models,", Oxford Lecture Series in Mathematics and its Applications, 3 (1996).
|
[17] |
P.-L. Lions and T. Paul, Sur les measure de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.
|
[18] |
A. Majda, "Compressible Fluids Flow and Systems of Conservation Laws in Several Space Variables,", Applied Mathematical Sciences, 53 (1984).
|
[19] |
P. A. Markowich and N. J. Mauser, The classical limit of the self-consistent quantum-Vlasov equations in 3D,, Math. Models Methods Appl. Sci., 3 (1993), 109.
doi: 10.1142/S0218202593000072. |
[20] |
N. Masmoudi, From Vlasov-Poisson system to the incompressible Euler system,, Comm. Partial Differential Equations, 26 (2001), 1913.
|
[21] |
M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 27 (2002), 2311.
|
[22] |
W. Strauss, "Nonlinear Wave Equations,", CBMS Regional Conference Series in Mathematics, 73 (1989).
|
[23] |
C. Sulem and P.-L. Sulem, "The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse,", Applied Mathematical Sciences, 139 (1999).
|
[24] |
P. Zhang, Wigner measure and the semiclassical limit of Schrödinger-Poisson equations,, SIAM J. Math. Anal., 34 (2002), 700.
doi: 10.1137/S0036141001393407. |
[25] |
P. Zhang, Y.-X Zheng and N. Mauser, The limit from the Schrödinger-Poisson to Vlasov-Poisson equations with general data in one dimension,, Comm. Pure Appl. Math., 55 (2002), 582.
doi: 10.1002/cpa.3017. |
show all references
References:
[1] |
T. Alazard and R. Carles, Semi-classical limit of Schrödinger-Poisson equations in space dimension $n\geq 3$,, J. Differential Equations, 233 (2007), 241.
doi: 10.1016/j.jde.2006.10.003. |
[2] |
A. Arnold and F. Nier, The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case,, Math. Methods Appl. Sci., 14 (1991), 595.
doi: 10.1002/mma.1670140902. |
[3] |
P. Bechouche, N. J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal,, Comm. Pure Appl. Math., 54 (2001), 852.
doi: 10.1002/cpa.3004. |
[4] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737.
|
[5] |
F. Brezzi and P. A. Markowich, The three-dimensional Wigner-Poisson problem: Existence, Uniqueness and Approximation,, Math. Methods Appl. Sci., 14 (1991), 35.
doi: 10.1002/mma.1670140103. |
[6] |
F. Castella, "Effects disperifs pour les équations de Vlasov et de Schrödinger,", Ph.D. Thesis, (1997). Google Scholar |
[7] |
F. Castella, $L^2$ solutions to the Schrödinger-Poisson system: existence, uniqueness, time behavior and smoothing effects,, Math. Models Methods Appl. Sci., 7 (1997), 1051.
doi: 10.1142/S0218202597000530. |
[8] |
T. Cazanava, "An Introduction to Nonlinear Schödinger Equations,", Testos de Métodos Matemáticos, (1980). Google Scholar |
[9] |
E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time,, Proc. Amer. Math. Soc., 126 (1998), 523.
doi: 10.1090/S0002-9939-98-04164-1. |
[10] |
C. C. Hao and H. L. Li, On the initial value problem for the bipolar Schrödinger-Poisson systems,, J. Partial Differential Equations, 17 (2004), 283.
|
[11] |
C. C. Hao, L. Hsiao and H. L. Li, Modified scattering for bipolar nonlinear Schrödiner-Poisson equations,, Math. Models Methods Appl. Sci., 14 (2004), 1481.
doi: 10.1142/S0218202504003684. |
[12] |
A. Jüngel and S. Wang, Convergence of nonlinear Schrödinger-Poisson system to the compressible Euler equations,, Comm. Partial Differential Equations, 28 (2003), 1005.
|
[13] |
T. Kato, Nonstationary flows of viscous and ideal fluids in $R$$^3$,, J. Funct. Anal., 9 (1972), 296.
doi: 10.1016/0022-1236(72)90003-1. |
[14] |
M. De Leo and D. Rial, Well posedness and smoothing effect of Schrödinger-Poisson equation,, J. Math. Phys., 48 (2007).
|
[15] |
H. L. Li and C.-K. Lin, Semiclassical limit and well-poseness of nonlinear Schrödinger-Poisson systems,, Electron. J. Differential Equations, 2003 ().
|
[16] |
P.-L. Lions, "Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models,", Oxford Lecture Series in Mathematics and its Applications, 3 (1996).
|
[17] |
P.-L. Lions and T. Paul, Sur les measure de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.
|
[18] |
A. Majda, "Compressible Fluids Flow and Systems of Conservation Laws in Several Space Variables,", Applied Mathematical Sciences, 53 (1984).
|
[19] |
P. A. Markowich and N. J. Mauser, The classical limit of the self-consistent quantum-Vlasov equations in 3D,, Math. Models Methods Appl. Sci., 3 (1993), 109.
doi: 10.1142/S0218202593000072. |
[20] |
N. Masmoudi, From Vlasov-Poisson system to the incompressible Euler system,, Comm. Partial Differential Equations, 26 (2001), 1913.
|
[21] |
M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 27 (2002), 2311.
|
[22] |
W. Strauss, "Nonlinear Wave Equations,", CBMS Regional Conference Series in Mathematics, 73 (1989).
|
[23] |
C. Sulem and P.-L. Sulem, "The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse,", Applied Mathematical Sciences, 139 (1999).
|
[24] |
P. Zhang, Wigner measure and the semiclassical limit of Schrödinger-Poisson equations,, SIAM J. Math. Anal., 34 (2002), 700.
doi: 10.1137/S0036141001393407. |
[25] |
P. Zhang, Y.-X Zheng and N. Mauser, The limit from the Schrödinger-Poisson to Vlasov-Poisson equations with general data in one dimension,, Comm. Pure Appl. Math., 55 (2002), 582.
doi: 10.1002/cpa.3017. |
[1] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[2] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[3] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[4] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[5] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[6] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[7] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[8] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[9] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[10] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[11] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[12] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[13] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[14] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[15] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[16] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[17] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[18] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[19] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[20] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]