December  2011, 4(4): 831-856. doi: 10.3934/krm.2011.4.831

Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential

1. 

IMT, UMR CNRS 5219, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France

2. 

Department of Mathematics, National University of Singapore, Singapore 119076, Singapore

3. 

IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, France

Received  May 2011 Revised  September 2011 Published  November 2011

We consider the three dimensional Gross-Pitaevskii equation\break (GPE) describing a Bose-Einstein Condensate (BEC) which is highly confined in vertical $z$ direction. The confining potential induces high oscillations in time. If the confinement in the $z$ direction is a harmonic trap -- an approximation which is widely used in physical experiments -- the very special structure of the spectrum of the confinement operator implies that the oscillations are periodic in time. Based on this observation, it can be proved that the GPE can be averaged out with an error of order of $\epsilon$, which is the typical period of the oscillations. In this article, we construct a more accurate averaged model, which approximates the GPE up to errors of order $\mathcal{O}(\epsilon^2)$. Then, expansions of this model over the eigenfunctions (modes) of the confining operator $H_z$ in the $z$-direction are given in view of numerical applications. Efficient numerical methods are constructed to solve the GPE with cylindrical symmetry in 3D and the approximation model with radial symmetry in 2D, and numerical results are presented for various kinds of initial data.
Citation: Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831
References:
[1]

G. Akrivis, Finite difference discretization of the cubic Schrödinger equation,, IMA J. Numer. Anal., 13 (1993), 115. doi: 10.1093/imanum/13.1.115. Google Scholar

[2]

W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation,, J. Comp. Phys., 187 (2003), 318. doi: 10.1016/S0021-9991(03)00102-5. Google Scholar

[3]

W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767. doi: 10.1142/S0218202505000534. Google Scholar

[4]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2010. doi: 10.1137/030601211. Google Scholar

[5]

W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates,, J. Comput. Phys., 227 (2008), 9778. doi: 10.1016/j.jcp.2008.07.017. Google Scholar

[6]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity,, J. Differential Equations, 245 (2008), 154. Google Scholar

[7]

N. Ben Abdallah, F. Méhats and O. Pinaud, Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement,, SIAM J. Math. Anal., 36 (): 986. doi: 10.1137/S0036141003437915. Google Scholar

[8]

N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189. doi: 10.1137/040614554. Google Scholar

[9]

B. Bidéaray-Fesquet, F. Castella and P. Degond, From Bloch model to the rate equations,, Discrete Contin. Dyn. Syst., 11 (2004), 1. doi: 10.3934/dcds.2004.11.1. Google Scholar

[10]

B. Bidéaray-Fesquet, F. Castella, E. Dumas and M. Gisclon, From Bloch model to the rate equations. II. The case of almost degenerate energy levels,, Math. Models Methods Appl. Sci., 14 (2004), 1785. doi: 10.1142/S0218202504003829. Google Scholar

[11]

J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander,, Bull. Soc. Math. France, 122 (1994), 77. Google Scholar

[12]

F. Bornemann, "Homogenization in Time of Singularly Perturbed Mechanical Systems,", Lecture Notes in Mathematics, 1687 (1998). Google Scholar

[13]

B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates,, Phys. Rev. Lett., 83 (1999), 895. doi: 10.1103/PhysRevLett.83.895. Google Scholar

[14]

F. Castella, P. Degond and T. Goudon, Diffusion dynamics of classical systems driven by an oscillatory force,, J. Stat. Phys., 124 (2006), 913. doi: 10.1007/s10955-006-9071-5. Google Scholar

[15]

F. Castella, P. Degond and T. Goudon, Large time dynamics of a classical system subject to a fast varying force,, Comm. Math. Phys., 276 (2007), 23. doi: 10.1007/s00220-007-0339-7. Google Scholar

[16]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lect. Notes Math., 10 (2003). Google Scholar

[17]

F. Delebecque-Fendt and F. Méhats, An effective mass theorem for the bidimensional electron gas in a strong magnetic field,, Comm. Math. Phys., 292 (2009), 829. Google Scholar

[18]

G. F. Dell'Antonio and L. Tenuta, Semiclassical analysis of constrained quantum systems,, J. Phys. A, 37 (2004), 5605. doi: 10.1088/0305-4470/37/21/007. Google Scholar

[19]

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap,, Phys. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.046706. Google Scholar

[20]

D. Funaro, "Polynomial Approximations of Differential Equations,", Lecture Notes in Physics, 8 (1992). Google Scholar

[21]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations,, J. Math. Pures Appl. (9), 76 (1997), 477. doi: 10.1016/S0021-7824(97)89959-X. Google Scholar

[22]

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,, SIAM Rev. Chronicle, 15 (1973). Google Scholar

[23]

B. Helffer, "Théorie Spectrale pour des Opérateurs Globalement Elliptiques,", Astérisque, 112 (1984). Google Scholar

[24]

B. Helffer and F. Nier, "Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians,", Lecture Notes in Mathematics, 1862 (2005). Google Scholar

[25]

D. Lannes, Nonlinear geometrical optics for oscillatory wave trains with a continuous oscillatory spectrum,, Adv. Differential Equations, 6 (2001), 731. Google Scholar

[26]

G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations,, J. Differential Equations, 187 (2003), 106. doi: 10.1016/S0022-0396(02)00037-2. Google Scholar

[27]

L. Pitaevskii and S. Stringari, "Bose-Einstein Condensation,", International Series of Monographs on Physics, 116 (2003). Google Scholar

[28]

M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable,, J. Comput. Phys., 104 (1993), 277. doi: 10.1006/jcph.1993.1029. Google Scholar

[29]

J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", Appl. Math. Sci., 59 (1985). Google Scholar

[30]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", 2nd edition, 59 (2007). Google Scholar

[31]

S. Schochet, Fast singular limits of hyperbolic PDEs,, J. Differential Equations, 114 (1994), 476. doi: 10.1006/jdeq.1994.1157. Google Scholar

[32]

G. Szegö, "Orthogonal Polynomials,", 4th edition, (1975). Google Scholar

[33]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,, J. Comput. Phys., 55 (1984), 203. doi: 10.1016/0021-9991(84)90003-2. Google Scholar

[34]

J. Wachsmuth and S. Teufel, Constrained quantum systems as an adiabatic problem,, Phys. Rev. A, 82 (2010). doi: 10.1103/PhysRevA.82.022112. Google Scholar

show all references

References:
[1]

G. Akrivis, Finite difference discretization of the cubic Schrödinger equation,, IMA J. Numer. Anal., 13 (1993), 115. doi: 10.1093/imanum/13.1.115. Google Scholar

[2]

W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation,, J. Comp. Phys., 187 (2003), 318. doi: 10.1016/S0021-9991(03)00102-5. Google Scholar

[3]

W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767. doi: 10.1142/S0218202505000534. Google Scholar

[4]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2010. doi: 10.1137/030601211. Google Scholar

[5]

W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates,, J. Comput. Phys., 227 (2008), 9778. doi: 10.1016/j.jcp.2008.07.017. Google Scholar

[6]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity,, J. Differential Equations, 245 (2008), 154. Google Scholar

[7]

N. Ben Abdallah, F. Méhats and O. Pinaud, Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement,, SIAM J. Math. Anal., 36 (): 986. doi: 10.1137/S0036141003437915. Google Scholar

[8]

N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189. doi: 10.1137/040614554. Google Scholar

[9]

B. Bidéaray-Fesquet, F. Castella and P. Degond, From Bloch model to the rate equations,, Discrete Contin. Dyn. Syst., 11 (2004), 1. doi: 10.3934/dcds.2004.11.1. Google Scholar

[10]

B. Bidéaray-Fesquet, F. Castella, E. Dumas and M. Gisclon, From Bloch model to the rate equations. II. The case of almost degenerate energy levels,, Math. Models Methods Appl. Sci., 14 (2004), 1785. doi: 10.1142/S0218202504003829. Google Scholar

[11]

J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander,, Bull. Soc. Math. France, 122 (1994), 77. Google Scholar

[12]

F. Bornemann, "Homogenization in Time of Singularly Perturbed Mechanical Systems,", Lecture Notes in Mathematics, 1687 (1998). Google Scholar

[13]

B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates,, Phys. Rev. Lett., 83 (1999), 895. doi: 10.1103/PhysRevLett.83.895. Google Scholar

[14]

F. Castella, P. Degond and T. Goudon, Diffusion dynamics of classical systems driven by an oscillatory force,, J. Stat. Phys., 124 (2006), 913. doi: 10.1007/s10955-006-9071-5. Google Scholar

[15]

F. Castella, P. Degond and T. Goudon, Large time dynamics of a classical system subject to a fast varying force,, Comm. Math. Phys., 276 (2007), 23. doi: 10.1007/s00220-007-0339-7. Google Scholar

[16]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lect. Notes Math., 10 (2003). Google Scholar

[17]

F. Delebecque-Fendt and F. Méhats, An effective mass theorem for the bidimensional electron gas in a strong magnetic field,, Comm. Math. Phys., 292 (2009), 829. Google Scholar

[18]

G. F. Dell'Antonio and L. Tenuta, Semiclassical analysis of constrained quantum systems,, J. Phys. A, 37 (2004), 5605. doi: 10.1088/0305-4470/37/21/007. Google Scholar

[19]

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap,, Phys. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.046706. Google Scholar

[20]

D. Funaro, "Polynomial Approximations of Differential Equations,", Lecture Notes in Physics, 8 (1992). Google Scholar

[21]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations,, J. Math. Pures Appl. (9), 76 (1997), 477. doi: 10.1016/S0021-7824(97)89959-X. Google Scholar

[22]

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,, SIAM Rev. Chronicle, 15 (1973). Google Scholar

[23]

B. Helffer, "Théorie Spectrale pour des Opérateurs Globalement Elliptiques,", Astérisque, 112 (1984). Google Scholar

[24]

B. Helffer and F. Nier, "Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians,", Lecture Notes in Mathematics, 1862 (2005). Google Scholar

[25]

D. Lannes, Nonlinear geometrical optics for oscillatory wave trains with a continuous oscillatory spectrum,, Adv. Differential Equations, 6 (2001), 731. Google Scholar

[26]

G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations,, J. Differential Equations, 187 (2003), 106. doi: 10.1016/S0022-0396(02)00037-2. Google Scholar

[27]

L. Pitaevskii and S. Stringari, "Bose-Einstein Condensation,", International Series of Monographs on Physics, 116 (2003). Google Scholar

[28]

M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable,, J. Comput. Phys., 104 (1993), 277. doi: 10.1006/jcph.1993.1029. Google Scholar

[29]

J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", Appl. Math. Sci., 59 (1985). Google Scholar

[30]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", 2nd edition, 59 (2007). Google Scholar

[31]

S. Schochet, Fast singular limits of hyperbolic PDEs,, J. Differential Equations, 114 (1994), 476. doi: 10.1006/jdeq.1994.1157. Google Scholar

[32]

G. Szegö, "Orthogonal Polynomials,", 4th edition, (1975). Google Scholar

[33]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,, J. Comput. Phys., 55 (1984), 203. doi: 10.1016/0021-9991(84)90003-2. Google Scholar

[34]

J. Wachsmuth and S. Teufel, Constrained quantum systems as an adiabatic problem,, Phys. Rev. A, 82 (2010). doi: 10.1103/PhysRevA.82.022112. Google Scholar

[1]

Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059

[2]

Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214

[3]

Patrick Henning, Johan Wärnegård. Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinetic & Related Models, 2019, 12 (6) : 1247-1271. doi: 10.3934/krm.2019048

[4]

Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225

[5]

Norman E. Dancer. On the converse problem for the Gross-Pitaevskii equations with a large parameter. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2481-2493. doi: 10.3934/dcds.2014.34.2481

[6]

Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905

[7]

Thomas Chen, Nataša Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 715-739. doi: 10.3934/dcds.2010.27.715

[8]

E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120

[9]

Yujin Guo, Xiaoyu Zeng, Huan-Song Zhou. Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3749-3786. doi: 10.3934/dcds.2017159

[10]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[11]

Shuai Li, Jingjing Yan, Xincai Zhu. Constraint minimizers of perturbed gross-pitaevskii energy functionals in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 65-81. doi: 10.3934/cpaa.2019005

[12]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[13]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[14]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[15]

Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255

[16]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[17]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[18]

Jaume Llibre, Amar Makhlouf, Sabrina Badi. $3$ - dimensional Hopf bifurcation via averaging theory of second order. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1287-1295. doi: 10.3934/dcds.2009.25.1287

[19]

Martin Redmann, Peter Benner. Approximation and model order reduction for second order systems with Levy-noise. Conference Publications, 2015, 2015 (special) : 945-953. doi: 10.3934/proc.2015.0945

[20]

Virginia Agostiniani. Second order approximations of quasistatic evolution problems in finite dimension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1125-1167. doi: 10.3934/dcds.2012.32.1125

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

[Back to Top]