December  2011, 4(4): 831-856. doi: 10.3934/krm.2011.4.831

Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential

1. 

IMT, UMR CNRS 5219, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France

2. 

Department of Mathematics, National University of Singapore, Singapore 119076, Singapore

3. 

IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, France

Received  May 2011 Revised  September 2011 Published  November 2011

We consider the three dimensional Gross-Pitaevskii equation\break (GPE) describing a Bose-Einstein Condensate (BEC) which is highly confined in vertical $z$ direction. The confining potential induces high oscillations in time. If the confinement in the $z$ direction is a harmonic trap -- an approximation which is widely used in physical experiments -- the very special structure of the spectrum of the confinement operator implies that the oscillations are periodic in time. Based on this observation, it can be proved that the GPE can be averaged out with an error of order of $\epsilon$, which is the typical period of the oscillations. In this article, we construct a more accurate averaged model, which approximates the GPE up to errors of order $\mathcal{O}(\epsilon^2)$. Then, expansions of this model over the eigenfunctions (modes) of the confining operator $H_z$ in the $z$-direction are given in view of numerical applications. Efficient numerical methods are constructed to solve the GPE with cylindrical symmetry in 3D and the approximation model with radial symmetry in 2D, and numerical results are presented for various kinds of initial data.
Citation: Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831
References:
[1]

G. Akrivis, Finite difference discretization of the cubic Schrödinger equation,, IMA J. Numer. Anal., 13 (1993), 115.  doi: 10.1093/imanum/13.1.115.  Google Scholar

[2]

W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation,, J. Comp. Phys., 187 (2003), 318.  doi: 10.1016/S0021-9991(03)00102-5.  Google Scholar

[3]

W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767.  doi: 10.1142/S0218202505000534.  Google Scholar

[4]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2010.  doi: 10.1137/030601211.  Google Scholar

[5]

W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates,, J. Comput. Phys., 227 (2008), 9778.  doi: 10.1016/j.jcp.2008.07.017.  Google Scholar

[6]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity,, J. Differential Equations, 245 (2008), 154.   Google Scholar

[7]

N. Ben Abdallah, F. Méhats and O. Pinaud, Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement,, SIAM J. Math. Anal., 36 (): 986.  doi: 10.1137/S0036141003437915.  Google Scholar

[8]

N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189.  doi: 10.1137/040614554.  Google Scholar

[9]

B. Bidéaray-Fesquet, F. Castella and P. Degond, From Bloch model to the rate equations,, Discrete Contin. Dyn. Syst., 11 (2004), 1.  doi: 10.3934/dcds.2004.11.1.  Google Scholar

[10]

B. Bidéaray-Fesquet, F. Castella, E. Dumas and M. Gisclon, From Bloch model to the rate equations. II. The case of almost degenerate energy levels,, Math. Models Methods Appl. Sci., 14 (2004), 1785.  doi: 10.1142/S0218202504003829.  Google Scholar

[11]

J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander,, Bull. Soc. Math. France, 122 (1994), 77.   Google Scholar

[12]

F. Bornemann, "Homogenization in Time of Singularly Perturbed Mechanical Systems,", Lecture Notes in Mathematics, 1687 (1998).   Google Scholar

[13]

B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates,, Phys. Rev. Lett., 83 (1999), 895.  doi: 10.1103/PhysRevLett.83.895.  Google Scholar

[14]

F. Castella, P. Degond and T. Goudon, Diffusion dynamics of classical systems driven by an oscillatory force,, J. Stat. Phys., 124 (2006), 913.  doi: 10.1007/s10955-006-9071-5.  Google Scholar

[15]

F. Castella, P. Degond and T. Goudon, Large time dynamics of a classical system subject to a fast varying force,, Comm. Math. Phys., 276 (2007), 23.  doi: 10.1007/s00220-007-0339-7.  Google Scholar

[16]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lect. Notes Math., 10 (2003).   Google Scholar

[17]

F. Delebecque-Fendt and F. Méhats, An effective mass theorem for the bidimensional electron gas in a strong magnetic field,, Comm. Math. Phys., 292 (2009), 829.   Google Scholar

[18]

G. F. Dell'Antonio and L. Tenuta, Semiclassical analysis of constrained quantum systems,, J. Phys. A, 37 (2004), 5605.  doi: 10.1088/0305-4470/37/21/007.  Google Scholar

[19]

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.046706.  Google Scholar

[20]

D. Funaro, "Polynomial Approximations of Differential Equations,", Lecture Notes in Physics, 8 (1992).   Google Scholar

[21]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations,, J. Math. Pures Appl. (9), 76 (1997), 477.  doi: 10.1016/S0021-7824(97)89959-X.  Google Scholar

[22]

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,, SIAM Rev. Chronicle, 15 (1973).   Google Scholar

[23]

B. Helffer, "Théorie Spectrale pour des Opérateurs Globalement Elliptiques,", Astérisque, 112 (1984).   Google Scholar

[24]

B. Helffer and F. Nier, "Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians,", Lecture Notes in Mathematics, 1862 (2005).   Google Scholar

[25]

D. Lannes, Nonlinear geometrical optics for oscillatory wave trains with a continuous oscillatory spectrum,, Adv. Differential Equations, 6 (2001), 731.   Google Scholar

[26]

G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations,, J. Differential Equations, 187 (2003), 106.  doi: 10.1016/S0022-0396(02)00037-2.  Google Scholar

[27]

L. Pitaevskii and S. Stringari, "Bose-Einstein Condensation,", International Series of Monographs on Physics, 116 (2003).   Google Scholar

[28]

M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable,, J. Comput. Phys., 104 (1993), 277.  doi: 10.1006/jcph.1993.1029.  Google Scholar

[29]

J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", Appl. Math. Sci., 59 (1985).   Google Scholar

[30]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", 2nd edition, 59 (2007).   Google Scholar

[31]

S. Schochet, Fast singular limits of hyperbolic PDEs,, J. Differential Equations, 114 (1994), 476.  doi: 10.1006/jdeq.1994.1157.  Google Scholar

[32]

G. Szegö, "Orthogonal Polynomials,", 4th edition, (1975).   Google Scholar

[33]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,, J. Comput. Phys., 55 (1984), 203.  doi: 10.1016/0021-9991(84)90003-2.  Google Scholar

[34]

J. Wachsmuth and S. Teufel, Constrained quantum systems as an adiabatic problem,, Phys. Rev. A, 82 (2010).  doi: 10.1103/PhysRevA.82.022112.  Google Scholar

show all references

References:
[1]

G. Akrivis, Finite difference discretization of the cubic Schrödinger equation,, IMA J. Numer. Anal., 13 (1993), 115.  doi: 10.1093/imanum/13.1.115.  Google Scholar

[2]

W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation,, J. Comp. Phys., 187 (2003), 318.  doi: 10.1016/S0021-9991(03)00102-5.  Google Scholar

[3]

W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767.  doi: 10.1142/S0218202505000534.  Google Scholar

[4]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2010.  doi: 10.1137/030601211.  Google Scholar

[5]

W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates,, J. Comput. Phys., 227 (2008), 9778.  doi: 10.1016/j.jcp.2008.07.017.  Google Scholar

[6]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity,, J. Differential Equations, 245 (2008), 154.   Google Scholar

[7]

N. Ben Abdallah, F. Méhats and O. Pinaud, Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement,, SIAM J. Math. Anal., 36 (): 986.  doi: 10.1137/S0036141003437915.  Google Scholar

[8]

N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189.  doi: 10.1137/040614554.  Google Scholar

[9]

B. Bidéaray-Fesquet, F. Castella and P. Degond, From Bloch model to the rate equations,, Discrete Contin. Dyn. Syst., 11 (2004), 1.  doi: 10.3934/dcds.2004.11.1.  Google Scholar

[10]

B. Bidéaray-Fesquet, F. Castella, E. Dumas and M. Gisclon, From Bloch model to the rate equations. II. The case of almost degenerate energy levels,, Math. Models Methods Appl. Sci., 14 (2004), 1785.  doi: 10.1142/S0218202504003829.  Google Scholar

[11]

J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander,, Bull. Soc. Math. France, 122 (1994), 77.   Google Scholar

[12]

F. Bornemann, "Homogenization in Time of Singularly Perturbed Mechanical Systems,", Lecture Notes in Mathematics, 1687 (1998).   Google Scholar

[13]

B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates,, Phys. Rev. Lett., 83 (1999), 895.  doi: 10.1103/PhysRevLett.83.895.  Google Scholar

[14]

F. Castella, P. Degond and T. Goudon, Diffusion dynamics of classical systems driven by an oscillatory force,, J. Stat. Phys., 124 (2006), 913.  doi: 10.1007/s10955-006-9071-5.  Google Scholar

[15]

F. Castella, P. Degond and T. Goudon, Large time dynamics of a classical system subject to a fast varying force,, Comm. Math. Phys., 276 (2007), 23.  doi: 10.1007/s00220-007-0339-7.  Google Scholar

[16]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lect. Notes Math., 10 (2003).   Google Scholar

[17]

F. Delebecque-Fendt and F. Méhats, An effective mass theorem for the bidimensional electron gas in a strong magnetic field,, Comm. Math. Phys., 292 (2009), 829.   Google Scholar

[18]

G. F. Dell'Antonio and L. Tenuta, Semiclassical analysis of constrained quantum systems,, J. Phys. A, 37 (2004), 5605.  doi: 10.1088/0305-4470/37/21/007.  Google Scholar

[19]

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.046706.  Google Scholar

[20]

D. Funaro, "Polynomial Approximations of Differential Equations,", Lecture Notes in Physics, 8 (1992).   Google Scholar

[21]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations,, J. Math. Pures Appl. (9), 76 (1997), 477.  doi: 10.1016/S0021-7824(97)89959-X.  Google Scholar

[22]

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,, SIAM Rev. Chronicle, 15 (1973).   Google Scholar

[23]

B. Helffer, "Théorie Spectrale pour des Opérateurs Globalement Elliptiques,", Astérisque, 112 (1984).   Google Scholar

[24]

B. Helffer and F. Nier, "Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians,", Lecture Notes in Mathematics, 1862 (2005).   Google Scholar

[25]

D. Lannes, Nonlinear geometrical optics for oscillatory wave trains with a continuous oscillatory spectrum,, Adv. Differential Equations, 6 (2001), 731.   Google Scholar

[26]

G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations,, J. Differential Equations, 187 (2003), 106.  doi: 10.1016/S0022-0396(02)00037-2.  Google Scholar

[27]

L. Pitaevskii and S. Stringari, "Bose-Einstein Condensation,", International Series of Monographs on Physics, 116 (2003).   Google Scholar

[28]

M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable,, J. Comput. Phys., 104 (1993), 277.  doi: 10.1006/jcph.1993.1029.  Google Scholar

[29]

J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", Appl. Math. Sci., 59 (1985).   Google Scholar

[30]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", 2nd edition, 59 (2007).   Google Scholar

[31]

S. Schochet, Fast singular limits of hyperbolic PDEs,, J. Differential Equations, 114 (1994), 476.  doi: 10.1006/jdeq.1994.1157.  Google Scholar

[32]

G. Szegö, "Orthogonal Polynomials,", 4th edition, (1975).   Google Scholar

[33]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,, J. Comput. Phys., 55 (1984), 203.  doi: 10.1016/0021-9991(84)90003-2.  Google Scholar

[34]

J. Wachsmuth and S. Teufel, Constrained quantum systems as an adiabatic problem,, Phys. Rev. A, 82 (2010).  doi: 10.1103/PhysRevA.82.022112.  Google Scholar

[1]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[13]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (6)

[Back to Top]