December  2011, 4(4): 873-900. doi: 10.3934/krm.2011.4.873

Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach

1. 

Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse Cedex 9, France

2. 

Department of Mathematics, University of Maryland, College Park, MD 20742

3. 

Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

Received  July 2010 Published  November 2011

We develop a Hilbert expansion approach for the derivation of fractional diffusion equations from the linear Boltzmann equation with heavy tail equilibria.
Citation: Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic & Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873
References:
[1]

C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size,, Trans. A. M. S., 284 (1984), 617.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[2]

N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors,, J. Math. Phys., 37 (1996), 3306.  doi: 10.1063/1.531567.  Google Scholar

[3]

N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency,, Math. Models Methods Appl. Sci., ().   Google Scholar

[4]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Boundary layers and homogenization of transport processes,, Publ. Res. Inst. Math. Sci., 15 (1979), 53.  doi: 10.2977/prims/1195188427.  Google Scholar

[5]

A. V. Bobylev, J. A. Carrillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions,, J. Statist. Phys., 98 (2000), 743.  doi: 10.1023/A:1018627625800.  Google Scholar

[6]

A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails,, J. Stat. Phys., 124 (2006), 497.  doi: 10.1007/s10955-006-9044-8.  Google Scholar

[7]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversibles processes,, Indiana Univ. Math. J., 49 (2000), 1175.   Google Scholar

[8]

M. H. Ernst and R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails,, J. Statist. Phys., 109 (2002), 407.  doi: 10.1023/A:1020437925931.  Google Scholar

[9]

T. Goudon and A. Mellet, On fluid limit for the semiconductors Boltzmann equation,, Journal Diff. Equations, 189 (2003), 17.  doi: 10.1016/S0022-0396(02)00096-7.  Google Scholar

[10]

E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths,, J. Math. Phys., 15 (1974), 75.  doi: 10.1063/1.1666510.  Google Scholar

[11]

N. Masmoudi and M.-L. Tayeb, On the diffusion limit of a semiconductor Boltzmann-Poisson system without micro-reversible process,, Comm. Partial Differential Equations, 35 (2010), 1163.   Google Scholar

[12]

A. Mellet, Diffusion limit of a nonlinear kinetic model without the detailed balance principle,, Monatshefte f. Mathematik, 134 (2002), 305.  doi: 10.1007/s605-002-8265-1.  Google Scholar

[13]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method,, Indiana Univ. Math. J., 59 (2010), 1333.  doi: 10.1512/iumj.2010.59.4128.  Google Scholar

[14]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations,, Arch. Ration. Mech. Anal., 199 (2011), 493.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[15]

D. A. Mendis and M. Rosenberg, Cosmic dusty plasma,, Annu. Rev. Astron. Astrophys., 32 (1994), 419.  doi: 10.1146/annurev.aa.32.090194.002223.  Google Scholar

[16]

A. Pulvirenti and G. Toscani, Asymptotic properties of the inelastic Kac model,, J. Statist. Phys., 114 (2004), 1453.  doi: 10.1023/B:JOSS.0000013964.98706.00.  Google Scholar

[17]

D. Summers and R. M. Thorne, The modified plasma dispersion function,, Phys. Fluids, 83 (1991), 1835.   Google Scholar

show all references

References:
[1]

C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size,, Trans. A. M. S., 284 (1984), 617.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[2]

N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors,, J. Math. Phys., 37 (1996), 3306.  doi: 10.1063/1.531567.  Google Scholar

[3]

N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency,, Math. Models Methods Appl. Sci., ().   Google Scholar

[4]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Boundary layers and homogenization of transport processes,, Publ. Res. Inst. Math. Sci., 15 (1979), 53.  doi: 10.2977/prims/1195188427.  Google Scholar

[5]

A. V. Bobylev, J. A. Carrillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions,, J. Statist. Phys., 98 (2000), 743.  doi: 10.1023/A:1018627625800.  Google Scholar

[6]

A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails,, J. Stat. Phys., 124 (2006), 497.  doi: 10.1007/s10955-006-9044-8.  Google Scholar

[7]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversibles processes,, Indiana Univ. Math. J., 49 (2000), 1175.   Google Scholar

[8]

M. H. Ernst and R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails,, J. Statist. Phys., 109 (2002), 407.  doi: 10.1023/A:1020437925931.  Google Scholar

[9]

T. Goudon and A. Mellet, On fluid limit for the semiconductors Boltzmann equation,, Journal Diff. Equations, 189 (2003), 17.  doi: 10.1016/S0022-0396(02)00096-7.  Google Scholar

[10]

E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths,, J. Math. Phys., 15 (1974), 75.  doi: 10.1063/1.1666510.  Google Scholar

[11]

N. Masmoudi and M.-L. Tayeb, On the diffusion limit of a semiconductor Boltzmann-Poisson system without micro-reversible process,, Comm. Partial Differential Equations, 35 (2010), 1163.   Google Scholar

[12]

A. Mellet, Diffusion limit of a nonlinear kinetic model without the detailed balance principle,, Monatshefte f. Mathematik, 134 (2002), 305.  doi: 10.1007/s605-002-8265-1.  Google Scholar

[13]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method,, Indiana Univ. Math. J., 59 (2010), 1333.  doi: 10.1512/iumj.2010.59.4128.  Google Scholar

[14]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations,, Arch. Ration. Mech. Anal., 199 (2011), 493.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[15]

D. A. Mendis and M. Rosenberg, Cosmic dusty plasma,, Annu. Rev. Astron. Astrophys., 32 (1994), 419.  doi: 10.1146/annurev.aa.32.090194.002223.  Google Scholar

[16]

A. Pulvirenti and G. Toscani, Asymptotic properties of the inelastic Kac model,, J. Statist. Phys., 114 (2004), 1453.  doi: 10.1023/B:JOSS.0000013964.98706.00.  Google Scholar

[17]

D. Summers and R. M. Thorne, The modified plasma dispersion function,, Phys. Fluids, 83 (1991), 1835.   Google Scholar

[1]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[2]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[3]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[4]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[5]

Yuanwei Qi. Anomalous exponents and RG for nonlinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 738-745. doi: 10.3934/proc.2005.2005.738

[6]

Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173

[7]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[8]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[9]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[10]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[11]

Naoufel Ben Abdallah, Hédia Chaker. Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation. Kinetic & Related Models, 2009, 2 (3) : 403-424. doi: 10.3934/krm.2009.2.403

[12]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic & Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[13]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[14]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[15]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[16]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[17]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[18]

Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic & Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281

[19]

Arnaud Debussche, Julien Vovelle. Diffusion limit for a stochastic kinetic problem. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2305-2326. doi: 10.3934/cpaa.2012.11.2305

[20]

Catherine Choquet, Marie-Christine Néel. From particles scale to anomalous or classical convection-diffusion models with path integrals. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 207-238. doi: 10.3934/dcdss.2014.7.207

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (9)

[Back to Top]