December  2011, 4(4): 901-918. doi: 10.3934/krm.2011.4.901

Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system

1. 

1-Université de Toulouse; UPS, INSA, UT1, UTM, Institut de Mathmatiques de Toulouse, F-31062 Toulouse, France, France, France

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708, United States

Received  July 2011 Revised  August 2011 Published  November 2011

This paper deals with the derivation and analysis of the the Hall Magneto-Hydrodynamic equations. We first provide a derivation of this system from a two-fluids Euler-Maxwell system for electrons and ions, through a set of scaling limits. We also propose a kinetic formulation for the Hall-MHD equations which contains as fluid closure different variants of the Hall-MHD model. Then, we prove the existence of global weak solutions for the incompressible viscous resistive Hall-MHD model. We use the particular structure of the Hall term which has zero contribution to the energy identity. Finally, we discuss particular solutions in the form of axisymmetric purely swirling magnetic fields and propose some regularization of the Hall equation.
Citation: Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic & Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901
References:
[1]

L. Arnold, J. Dreher and R. Grauer, A semi-implicit Hall-MHD solver using whistler wave preconditioning,, Comput. Phys. Comm., 178 (2008), 553.   Google Scholar

[2]

S. I. Braginskii, Transport processes in a plasma,, in, (1965).   Google Scholar

[3]

B. Cassany and P. Grua, Analysis of the operating regimes of microsecond-conduction-time plasma opening switches,, J. Appl. Phys., 78 (1995), 67.  doi: 10.1063/1.360583.  Google Scholar

[4]

L. Chacòn and D. A. Knoll, A 2D high-$\beta$ Hall MHD implicit nonlinear solver,, J. Comput. Phys., 188 (2003), 573.  doi: 10.1016/S0021-9991(03)00193-1.  Google Scholar

[5]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures,, in, (2007).  doi: 10.1016/B978-008044535-9/50002-9.  Google Scholar

[6]

P. Degond, F. Deluzet, G. Dimarco, G. Gallice, P. Santagati and C. Tessieras, Simulation of non-equilibrium plasmas with a numerical noise-reduced particle-in-cell method,, in, (2010), 10.   Google Scholar

[7]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases,, Transport Theory Statist. Phys., 25 (1996), 595.  doi: 10.1080/00411459608222915.  Google Scholar

[8]

J. Dreher, V. Runban and R. Grauer, Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation,, Physica Scripta, 72 (2005), 451.  doi: 10.1088/0031-8949/72/6/004.  Google Scholar

[9]

G. Duvaut and J.-L. Lions, inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Ration. Mech. Anal., 46 (1972), 241.   Google Scholar

[10]

C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2009).   Google Scholar

[11]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophysical and Astrophysical Fluid Dynamics, 62 (1991), 15.  doi: 10.1080/03091929108229123.  Google Scholar

[12]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Physica D, 208 (2005), 59.  doi: 10.1016/j.physd.2005.06.003.  Google Scholar

[13]

D. S. Harned and Z. Mikić, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations,, J. Comput. Phys., 83 (1989), 1.  doi: 10.1016/0021-9991(89)90220-9.  Google Scholar

[14]

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of reversed field current layers,, Physica Scripta, T107 (2004), 20.  doi: 10.1238/Physica.Topical.107a00020.  Google Scholar

[15]

F. Kazeminezhad, J. N. Leboeuf, F. Brunel and J. M. Dawson, A discrete model for MHD incorporating the Hall term,, J. Comput. Phys., 104 (1993), 398.  doi: 10.1006/jcph.1993.1039.  Google Scholar

[16]

A. S. Kingsep, Yu. V. Mokhov and Y. V. Chukbar, Nonlinear skin phenomenas in plasmas, Nonlinear and Turbulent Processes in Physics,, in, (1983), 10.   Google Scholar

[17]

J.-L.Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod, (1969).   Google Scholar

[18]

J.-G. Liu and W.-C. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation,, SIAM J. Math. Anal., 41 (2009), 1825.   Google Scholar

[19]

S. M. Mahajan and V. Krishan, Exact solution of the incompressible Hall magnetohydrodynamics,, Mon. Not. R. Astron. Soc., 359 (2005).  doi: 10.1111/j.1745-3933.2005.00028.x.  Google Scholar

[20]

F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results,, Ann. Inst. Henri Poincaré, 16 (1999), 221.   Google Scholar

[21]

A. N. Simakov and L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics,, Phys. Rev. Lett., 101 (2008).  doi: 10.1103/PhysRevLett.101.105003.  Google Scholar

[22]

F. Valentini, P. Tràvníček, F. Califano, P. Hellinger and A. Mangeney, A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma,, J. Comput. Phys., 225 (2007), 753.  doi: 10.1016/j.jcp.2007.01.001.  Google Scholar

show all references

References:
[1]

L. Arnold, J. Dreher and R. Grauer, A semi-implicit Hall-MHD solver using whistler wave preconditioning,, Comput. Phys. Comm., 178 (2008), 553.   Google Scholar

[2]

S. I. Braginskii, Transport processes in a plasma,, in, (1965).   Google Scholar

[3]

B. Cassany and P. Grua, Analysis of the operating regimes of microsecond-conduction-time plasma opening switches,, J. Appl. Phys., 78 (1995), 67.  doi: 10.1063/1.360583.  Google Scholar

[4]

L. Chacòn and D. A. Knoll, A 2D high-$\beta$ Hall MHD implicit nonlinear solver,, J. Comput. Phys., 188 (2003), 573.  doi: 10.1016/S0021-9991(03)00193-1.  Google Scholar

[5]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures,, in, (2007).  doi: 10.1016/B978-008044535-9/50002-9.  Google Scholar

[6]

P. Degond, F. Deluzet, G. Dimarco, G. Gallice, P. Santagati and C. Tessieras, Simulation of non-equilibrium plasmas with a numerical noise-reduced particle-in-cell method,, in, (2010), 10.   Google Scholar

[7]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases,, Transport Theory Statist. Phys., 25 (1996), 595.  doi: 10.1080/00411459608222915.  Google Scholar

[8]

J. Dreher, V. Runban and R. Grauer, Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation,, Physica Scripta, 72 (2005), 451.  doi: 10.1088/0031-8949/72/6/004.  Google Scholar

[9]

G. Duvaut and J.-L. Lions, inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Ration. Mech. Anal., 46 (1972), 241.   Google Scholar

[10]

C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2009).   Google Scholar

[11]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophysical and Astrophysical Fluid Dynamics, 62 (1991), 15.  doi: 10.1080/03091929108229123.  Google Scholar

[12]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Physica D, 208 (2005), 59.  doi: 10.1016/j.physd.2005.06.003.  Google Scholar

[13]

D. S. Harned and Z. Mikić, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations,, J. Comput. Phys., 83 (1989), 1.  doi: 10.1016/0021-9991(89)90220-9.  Google Scholar

[14]

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of reversed field current layers,, Physica Scripta, T107 (2004), 20.  doi: 10.1238/Physica.Topical.107a00020.  Google Scholar

[15]

F. Kazeminezhad, J. N. Leboeuf, F. Brunel and J. M. Dawson, A discrete model for MHD incorporating the Hall term,, J. Comput. Phys., 104 (1993), 398.  doi: 10.1006/jcph.1993.1039.  Google Scholar

[16]

A. S. Kingsep, Yu. V. Mokhov and Y. V. Chukbar, Nonlinear skin phenomenas in plasmas, Nonlinear and Turbulent Processes in Physics,, in, (1983), 10.   Google Scholar

[17]

J.-L.Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod, (1969).   Google Scholar

[18]

J.-G. Liu and W.-C. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation,, SIAM J. Math. Anal., 41 (2009), 1825.   Google Scholar

[19]

S. M. Mahajan and V. Krishan, Exact solution of the incompressible Hall magnetohydrodynamics,, Mon. Not. R. Astron. Soc., 359 (2005).  doi: 10.1111/j.1745-3933.2005.00028.x.  Google Scholar

[20]

F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results,, Ann. Inst. Henri Poincaré, 16 (1999), 221.   Google Scholar

[21]

A. N. Simakov and L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics,, Phys. Rev. Lett., 101 (2008).  doi: 10.1103/PhysRevLett.101.105003.  Google Scholar

[22]

F. Valentini, P. Tràvníček, F. Califano, P. Hellinger and A. Mangeney, A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma,, J. Comput. Phys., 225 (2007), 753.  doi: 10.1016/j.jcp.2007.01.001.  Google Scholar

[1]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[10]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (101)

[Back to Top]