December  2011, 4(4): 901-918. doi: 10.3934/krm.2011.4.901

Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system

1. 

1-Université de Toulouse; UPS, INSA, UT1, UTM, Institut de Mathmatiques de Toulouse, F-31062 Toulouse, France, France, France

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708, United States

Received  July 2011 Revised  August 2011 Published  November 2011

This paper deals with the derivation and analysis of the the Hall Magneto-Hydrodynamic equations. We first provide a derivation of this system from a two-fluids Euler-Maxwell system for electrons and ions, through a set of scaling limits. We also propose a kinetic formulation for the Hall-MHD equations which contains as fluid closure different variants of the Hall-MHD model. Then, we prove the existence of global weak solutions for the incompressible viscous resistive Hall-MHD model. We use the particular structure of the Hall term which has zero contribution to the energy identity. Finally, we discuss particular solutions in the form of axisymmetric purely swirling magnetic fields and propose some regularization of the Hall equation.
Citation: Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic & Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901
References:
[1]

L. Arnold, J. Dreher and R. Grauer, A semi-implicit Hall-MHD solver using whistler wave preconditioning,, Comput. Phys. Comm., 178 (2008), 553.   Google Scholar

[2]

S. I. Braginskii, Transport processes in a plasma,, in, (1965).   Google Scholar

[3]

B. Cassany and P. Grua, Analysis of the operating regimes of microsecond-conduction-time plasma opening switches,, J. Appl. Phys., 78 (1995), 67.  doi: 10.1063/1.360583.  Google Scholar

[4]

L. Chacòn and D. A. Knoll, A 2D high-$\beta$ Hall MHD implicit nonlinear solver,, J. Comput. Phys., 188 (2003), 573.  doi: 10.1016/S0021-9991(03)00193-1.  Google Scholar

[5]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures,, in, (2007).  doi: 10.1016/B978-008044535-9/50002-9.  Google Scholar

[6]

P. Degond, F. Deluzet, G. Dimarco, G. Gallice, P. Santagati and C. Tessieras, Simulation of non-equilibrium plasmas with a numerical noise-reduced particle-in-cell method,, in, (2010), 10.   Google Scholar

[7]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases,, Transport Theory Statist. Phys., 25 (1996), 595.  doi: 10.1080/00411459608222915.  Google Scholar

[8]

J. Dreher, V. Runban and R. Grauer, Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation,, Physica Scripta, 72 (2005), 451.  doi: 10.1088/0031-8949/72/6/004.  Google Scholar

[9]

G. Duvaut and J.-L. Lions, inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Ration. Mech. Anal., 46 (1972), 241.   Google Scholar

[10]

C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2009).   Google Scholar

[11]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophysical and Astrophysical Fluid Dynamics, 62 (1991), 15.  doi: 10.1080/03091929108229123.  Google Scholar

[12]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Physica D, 208 (2005), 59.  doi: 10.1016/j.physd.2005.06.003.  Google Scholar

[13]

D. S. Harned and Z. Mikić, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations,, J. Comput. Phys., 83 (1989), 1.  doi: 10.1016/0021-9991(89)90220-9.  Google Scholar

[14]

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of reversed field current layers,, Physica Scripta, T107 (2004), 20.  doi: 10.1238/Physica.Topical.107a00020.  Google Scholar

[15]

F. Kazeminezhad, J. N. Leboeuf, F. Brunel and J. M. Dawson, A discrete model for MHD incorporating the Hall term,, J. Comput. Phys., 104 (1993), 398.  doi: 10.1006/jcph.1993.1039.  Google Scholar

[16]

A. S. Kingsep, Yu. V. Mokhov and Y. V. Chukbar, Nonlinear skin phenomenas in plasmas, Nonlinear and Turbulent Processes in Physics,, in, (1983), 10.   Google Scholar

[17]

J.-L.Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod, (1969).   Google Scholar

[18]

J.-G. Liu and W.-C. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation,, SIAM J. Math. Anal., 41 (2009), 1825.   Google Scholar

[19]

S. M. Mahajan and V. Krishan, Exact solution of the incompressible Hall magnetohydrodynamics,, Mon. Not. R. Astron. Soc., 359 (2005).  doi: 10.1111/j.1745-3933.2005.00028.x.  Google Scholar

[20]

F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results,, Ann. Inst. Henri Poincaré, 16 (1999), 221.   Google Scholar

[21]

A. N. Simakov and L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics,, Phys. Rev. Lett., 101 (2008).  doi: 10.1103/PhysRevLett.101.105003.  Google Scholar

[22]

F. Valentini, P. Tràvníček, F. Califano, P. Hellinger and A. Mangeney, A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma,, J. Comput. Phys., 225 (2007), 753.  doi: 10.1016/j.jcp.2007.01.001.  Google Scholar

show all references

References:
[1]

L. Arnold, J. Dreher and R. Grauer, A semi-implicit Hall-MHD solver using whistler wave preconditioning,, Comput. Phys. Comm., 178 (2008), 553.   Google Scholar

[2]

S. I. Braginskii, Transport processes in a plasma,, in, (1965).   Google Scholar

[3]

B. Cassany and P. Grua, Analysis of the operating regimes of microsecond-conduction-time plasma opening switches,, J. Appl. Phys., 78 (1995), 67.  doi: 10.1063/1.360583.  Google Scholar

[4]

L. Chacòn and D. A. Knoll, A 2D high-$\beta$ Hall MHD implicit nonlinear solver,, J. Comput. Phys., 188 (2003), 573.  doi: 10.1016/S0021-9991(03)00193-1.  Google Scholar

[5]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures,, in, (2007).  doi: 10.1016/B978-008044535-9/50002-9.  Google Scholar

[6]

P. Degond, F. Deluzet, G. Dimarco, G. Gallice, P. Santagati and C. Tessieras, Simulation of non-equilibrium plasmas with a numerical noise-reduced particle-in-cell method,, in, (2010), 10.   Google Scholar

[7]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases,, Transport Theory Statist. Phys., 25 (1996), 595.  doi: 10.1080/00411459608222915.  Google Scholar

[8]

J. Dreher, V. Runban and R. Grauer, Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation,, Physica Scripta, 72 (2005), 451.  doi: 10.1088/0031-8949/72/6/004.  Google Scholar

[9]

G. Duvaut and J.-L. Lions, inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Ration. Mech. Anal., 46 (1972), 241.   Google Scholar

[10]

C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2009).   Google Scholar

[11]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophysical and Astrophysical Fluid Dynamics, 62 (1991), 15.  doi: 10.1080/03091929108229123.  Google Scholar

[12]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Physica D, 208 (2005), 59.  doi: 10.1016/j.physd.2005.06.003.  Google Scholar

[13]

D. S. Harned and Z. Mikić, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations,, J. Comput. Phys., 83 (1989), 1.  doi: 10.1016/0021-9991(89)90220-9.  Google Scholar

[14]

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of reversed field current layers,, Physica Scripta, T107 (2004), 20.  doi: 10.1238/Physica.Topical.107a00020.  Google Scholar

[15]

F. Kazeminezhad, J. N. Leboeuf, F. Brunel and J. M. Dawson, A discrete model for MHD incorporating the Hall term,, J. Comput. Phys., 104 (1993), 398.  doi: 10.1006/jcph.1993.1039.  Google Scholar

[16]

A. S. Kingsep, Yu. V. Mokhov and Y. V. Chukbar, Nonlinear skin phenomenas in plasmas, Nonlinear and Turbulent Processes in Physics,, in, (1983), 10.   Google Scholar

[17]

J.-L.Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod, (1969).   Google Scholar

[18]

J.-G. Liu and W.-C. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation,, SIAM J. Math. Anal., 41 (2009), 1825.   Google Scholar

[19]

S. M. Mahajan and V. Krishan, Exact solution of the incompressible Hall magnetohydrodynamics,, Mon. Not. R. Astron. Soc., 359 (2005).  doi: 10.1111/j.1745-3933.2005.00028.x.  Google Scholar

[20]

F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results,, Ann. Inst. Henri Poincaré, 16 (1999), 221.   Google Scholar

[21]

A. N. Simakov and L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics,, Phys. Rev. Lett., 101 (2008).  doi: 10.1103/PhysRevLett.101.105003.  Google Scholar

[22]

F. Valentini, P. Tràvníček, F. Califano, P. Hellinger and A. Mangeney, A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma,, J. Comput. Phys., 225 (2007), 753.  doi: 10.1016/j.jcp.2007.01.001.  Google Scholar

[1]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[2]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[3]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[4]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[5]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[6]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[7]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[8]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[9]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[10]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[11]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[12]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[13]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[14]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[15]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[16]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[17]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[18]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[19]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[20]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (103)

[Back to Top]