December  2011, 4(4): 919-934. doi: 10.3934/krm.2011.4.919

Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240

2. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501

3. 

17-26 Iwasaki, Hodogaya, Yokohama 240-0015

4. 

School of Mathematics, Wuhan University, 430072, Wuhan

5. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Received  May 2011 Revised  June 2011 Published  November 2011

In this paper, we consider the Cauchy problem for the non-cutoff Boltzmann equation in the soft potential case. By using a singular change of velocity variables before and after collision, we prove the uniqueness of weak solutions to the Cauchy problem in the space of functions with polynomial decay in the velocity variable.
Citation: Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919
References:
[1]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083. Google Scholar

[2]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,, Arch. Rational Mech. Anal., 198 (2010), 39. doi: 10.1007/s00205-010-0290-1. Google Scholar

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff,, Comm. Math. Phys., 304 (2011), 513. doi: 10.1007/s00220-011-1242-9. Google Scholar

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Rational Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0. Google Scholar

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff,, to appear in Kyoto J. Math., (). Google Scholar

[6]

L. Desvillettes and C. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions,, Arch. Ration. Mech. Anal., 193 (2009), 227. doi: 10.1007/s00205-009-0233-x. Google Scholar

[7]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability,, Ann. Math. (2), 130 (1989), 321. doi: 10.2307/1971423. Google Scholar

[8]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Maths. J., 53 (2004), 1081. doi: 10.1512/iumj.2004.53.2574. Google Scholar

[9]

P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II, III,, J. Math. Kyoto Univ., 34 (1994), 391. Google Scholar

[10]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation,, Phys. D., 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011. Google Scholar

[11]

X. Lu, A result on uniqueness of mild solutions of Boltzmann equations,, Proceedings of the Fourteenth International Conference on Transport Theory (Beijing, 26 (1997), 209. Google Scholar

[12]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equations for Maxwell gas,, J. Statist. Phys., 94 (1999), 619. doi: 10.1023/A:1004589506756. Google Scholar

[13]

S. Ukai, Solutions of the Boltzmann equation,, in, 18 (1986), 37. Google Scholar

[14]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions,, Analysis and Applications (Singap.), 4 (2006), 263. doi: 10.1142/S0219530506000784. Google Scholar

[15]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71. doi: 10.1016/S1874-5792(02)80004-0. Google Scholar

show all references

References:
[1]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083. Google Scholar

[2]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,, Arch. Rational Mech. Anal., 198 (2010), 39. doi: 10.1007/s00205-010-0290-1. Google Scholar

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff,, Comm. Math. Phys., 304 (2011), 513. doi: 10.1007/s00220-011-1242-9. Google Scholar

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Rational Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0. Google Scholar

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff,, to appear in Kyoto J. Math., (). Google Scholar

[6]

L. Desvillettes and C. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions,, Arch. Ration. Mech. Anal., 193 (2009), 227. doi: 10.1007/s00205-009-0233-x. Google Scholar

[7]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability,, Ann. Math. (2), 130 (1989), 321. doi: 10.2307/1971423. Google Scholar

[8]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Maths. J., 53 (2004), 1081. doi: 10.1512/iumj.2004.53.2574. Google Scholar

[9]

P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II, III,, J. Math. Kyoto Univ., 34 (1994), 391. Google Scholar

[10]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation,, Phys. D., 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011. Google Scholar

[11]

X. Lu, A result on uniqueness of mild solutions of Boltzmann equations,, Proceedings of the Fourteenth International Conference on Transport Theory (Beijing, 26 (1997), 209. Google Scholar

[12]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equations for Maxwell gas,, J. Statist. Phys., 94 (1999), 619. doi: 10.1023/A:1004589506756. Google Scholar

[13]

S. Ukai, Solutions of the Boltzmann equation,, in, 18 (1986), 37. Google Scholar

[14]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions,, Analysis and Applications (Singap.), 4 (2006), 263. doi: 10.1142/S0219530506000784. Google Scholar

[15]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71. doi: 10.1016/S1874-5792(02)80004-0. Google Scholar

[1]

Renjun Duan, Shota Sakamoto. Solution to the Boltzmann equation in velocity-weighted Chemin-Lerner type spaces. Kinetic & Related Models, 2018, 11 (6) : 1301-1331. doi: 10.3934/krm.2018051

[2]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[3]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[4]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[5]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[6]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[7]

Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic & Related Models, 2014, 7 (3) : 433-461. doi: 10.3934/krm.2014.7.433

[8]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[9]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[10]

Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949

[11]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[12]

Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353

[13]

Guy Métivier, K. Zumbrun. Existence and sharp localization in velocity of small-amplitude Boltzmann shocks. Kinetic & Related Models, 2009, 2 (4) : 667-705. doi: 10.3934/krm.2009.2.667

[14]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[15]

Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190

[16]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[17]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[18]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

[Back to Top]