December  2011, 4(4): 919-934. doi: 10.3934/krm.2011.4.919

Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240

2. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501

3. 

17-26 Iwasaki, Hodogaya, Yokohama 240-0015

4. 

School of Mathematics, Wuhan University, 430072, Wuhan

5. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Received  May 2011 Revised  June 2011 Published  November 2011

In this paper, we consider the Cauchy problem for the non-cutoff Boltzmann equation in the soft potential case. By using a singular change of velocity variables before and after collision, we prove the uniqueness of weak solutions to the Cauchy problem in the space of functions with polynomial decay in the velocity variable.
Citation: Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic and Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919
References:
[1]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., 152 (2000), 327-355. doi: 10.1007/s002050000083.

[2]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Rational Mech. Anal., 198 (2010), 39-123. doi: 10.1007/s00205-010-0290-1.

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys., 304 (2011), 513-581. doi: 10.1007/s00220-011-1242-9.

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Rational Mech. Anal., 202 (2011) 599-661. doi: 10.1007/s00205-011-0432-0.

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff,, to appear in Kyoto J. Math., (). 

[6]

L. Desvillettes and C. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Ration. Mech. Anal., 193 (2009), 227-253. doi: 10.1007/s00205-009-0233-x.

[7]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math. (2), 130 (1989), 321-366. doi: 10.2307/1971423.

[8]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Maths. J., 53 (2004), 1081-1094. doi: 10.1512/iumj.2004.53.2574.

[9]

P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II, III, J. Math. Kyoto Univ., 34 (1994), 391-427, 429-461, 539-584.

[10]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation, Phys. D., 188 (2004), 178-192. doi: 10.1016/j.physd.2003.07.011.

[11]

X. Lu, A result on uniqueness of mild solutions of Boltzmann equations, Proceedings of the Fourteenth International Conference on Transport Theory (Beijing, 1995), Transport Theory Statist. Phys., 26 (1997), 209-220.

[12]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equations for Maxwell gas, J. Statist. Phys., 94 (1999), 619-637. doi: 10.1023/A:1004589506756.

[13]

S. Ukai, Solutions of the Boltzmann equation, in "Pattern and Waves" (eds. M. Mimura and T. Nishida), 37-96, Studies of Mathematics and Its Applications, 18, North-Holland, Amsterdam, 1986.

[14]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions, Analysis and Applications (Singap.), 4 (2006), 263-310. doi: 10.1142/S0219530506000784.

[15]

C. Villani, A review of mathematical topics in collisional kinetic theory, in "Handbook of Mathematical Fluid Dynamics" (eds. S. Friedlander and D. Serre), Vol. I, 71-305, North-Holland, Amsterdam, 2002. doi: 10.1016/S1874-5792(02)80004-0.

show all references

References:
[1]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., 152 (2000), 327-355. doi: 10.1007/s002050000083.

[2]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Rational Mech. Anal., 198 (2010), 39-123. doi: 10.1007/s00205-010-0290-1.

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys., 304 (2011), 513-581. doi: 10.1007/s00220-011-1242-9.

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Rational Mech. Anal., 202 (2011) 599-661. doi: 10.1007/s00205-011-0432-0.

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff,, to appear in Kyoto J. Math., (). 

[6]

L. Desvillettes and C. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Ration. Mech. Anal., 193 (2009), 227-253. doi: 10.1007/s00205-009-0233-x.

[7]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math. (2), 130 (1989), 321-366. doi: 10.2307/1971423.

[8]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Maths. J., 53 (2004), 1081-1094. doi: 10.1512/iumj.2004.53.2574.

[9]

P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II, III, J. Math. Kyoto Univ., 34 (1994), 391-427, 429-461, 539-584.

[10]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation, Phys. D., 188 (2004), 178-192. doi: 10.1016/j.physd.2003.07.011.

[11]

X. Lu, A result on uniqueness of mild solutions of Boltzmann equations, Proceedings of the Fourteenth International Conference on Transport Theory (Beijing, 1995), Transport Theory Statist. Phys., 26 (1997), 209-220.

[12]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equations for Maxwell gas, J. Statist. Phys., 94 (1999), 619-637. doi: 10.1023/A:1004589506756.

[13]

S. Ukai, Solutions of the Boltzmann equation, in "Pattern and Waves" (eds. M. Mimura and T. Nishida), 37-96, Studies of Mathematics and Its Applications, 18, North-Holland, Amsterdam, 1986.

[14]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions, Analysis and Applications (Singap.), 4 (2006), 263-310. doi: 10.1142/S0219530506000784.

[15]

C. Villani, A review of mathematical topics in collisional kinetic theory, in "Handbook of Mathematical Fluid Dynamics" (eds. S. Friedlander and D. Serre), Vol. I, 71-305, North-Holland, Amsterdam, 2002. doi: 10.1016/S1874-5792(02)80004-0.

[1]

Renjun Duan, Shota Sakamoto. Solution to the Boltzmann equation in velocity-weighted Chemin-Lerner type spaces. Kinetic and Related Models, 2018, 11 (6) : 1301-1331. doi: 10.3934/krm.2018051

[2]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[3]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[4]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic and Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[5]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[6]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[7]

Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic and Related Models, 2014, 7 (3) : 433-461. doi: 10.3934/krm.2014.7.433

[8]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[9]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[10]

Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure and Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949

[11]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[12]

Kin Ming Hui, Jinwan Park. Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5473-5508. doi: 10.3934/dcds.2021085

[13]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[14]

Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353

[15]

Guy Métivier, K. Zumbrun. Existence and sharp localization in velocity of small-amplitude Boltzmann shocks. Kinetic and Related Models, 2009, 2 (4) : 667-705. doi: 10.3934/krm.2009.2.667

[16]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[17]

Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190

[18]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[19]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic and Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[20]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (3)

[Back to Top]