December  2011, 4(4): 991-1023. doi: 10.3934/krm.2011.4.991

Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model

1. 

Université de Bordeaux 1, 351, cours de la Libération, 33405 TALENCE Cedex, France

2. 

Institut de Mathématiques de Toulouse, 118, route de Narbonne, 31062 TOULOUSE Cedex, France, France

3. 

Laboratoire Paul Painlevé, UFR de Mathématiques, Cité Scientifique, 59655 VILLENEUVE D’ASCQ Cedex, France

Received  April 2011 Revised  July 2011 Published  November 2011

The present work is devoted to the simulation of a strongly magnetized plasma considered as a mixture of an ion fluid and an electron fluid. For the sake of simplicity, we assume that the model is isothermal and described by Euler equations coupled with a term representing the Lorentz force. Moreover we assume that both Euler systems are coupled through a quasi-neutrality constraint of the form $n_{i}=n_{e}$. The numerical method which is described in the present document is based on an Asymptotic-Preserving semi-discretization in time of a variant of this two-fluid Euler-Lorentz model with a small perturbation of the quasi-neutrality constraint. Firstly, we present the two-fluid model and the motivations for introducing a small perturbation into the quasi-neutrality equation, then we describe the time semi-discretization of the perturbed model and a fully-discrete finite volume scheme based on it. Finally, we present some numerical results which have been obtained with this method.
Citation: Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic & Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991
References:
[1]

M. Beer and G. Hammett, Toroidal gyrofluid equations for simulations of tokamak turbulence,, Phys. Plasmas, 3 (1996), 4046. doi: 10.1063/1.871538. Google Scholar

[2]

R. Belaouar, N. Crouseilles, P. Degond and E. Sonnendrücker, An asymptotically stable semi-lagrangian scheme in the quasi-neutral limit,, J. Sci. Comput., 41 (2009), 341. doi: 10.1007/s10915-009-9302-4. Google Scholar

[3]

A. Brizard, "Nonlinear Gyrokinetic Tokamak Physics,", Ph.D thesis, (1990). Google Scholar

[4]

A. Brizard and T.-S. Hahm, Foundations of nonlinear gyrokinetic theory,, Rev. Mod. Phys., 79 (2007), 421. doi: 10.1103/RevModPhys.79.421. Google Scholar

[5]

S. Brull, P. Degond and F. Deluzet, Degenerate anisotropic elliptic problems and magnetized plasmas simulations,, to appear in Commun. Comput. Phys., (). Google Scholar

[6]

C. Buet, S. Cordier, B. Lucquin-Desreux and S. Mancini, Diffusion limit of the Lorentz model: Asymptotic-preserving schemes,, M2AN Math. Model. Numer. Anal. \textbf{36} (2002), 36 (2002), 631. doi: 10.1051/m2an:2002028. Google Scholar

[7]

C. Buet and B. Després, Asymptotic-Preserving and positive schemes for radiation hydrodynamics,, J. Comput. Phys., 215 (2006), 717. doi: 10.1016/j.jcp.2005.11.011. Google Scholar

[8]

J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic-preserving schemes for bubbling and flowing regimes,, J. Comput. Phys., 227 (2008), 7929. doi: 10.1016/j.jcp.2008.05.002. Google Scholar

[9]

P. Crispel, P. Degond and M.-H. Vignal, Quasi-neutral fluid models for current-carrying plasmas,, J. Comput. Phys., 205 (2005), 408. doi: 10.1016/j.jcp.2004.11.011. Google Scholar

[10]

P. Crispel, P. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit,, J. Comput. Phys., 223 (2007), 208. doi: 10.1016/j.jcp.2006.09.004. Google Scholar

[11]

P. Crispel, P. Degond and M.-H. Vignal, A plasma expansion model based on the full Euler-Poisson system,, Math. Models Methods Appl. Sci., 17 (2007), 1129. doi: 10.1142/S0218202507002224. Google Scholar

[12]

N. Crouseilles and M. Lemou, An asymptotic-preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: Diffusion and high-field scaling limits,, Kinet. Relat. Models, 4 (2011), 441. doi: 10.3934/krm.2011.4.441. Google Scholar

[13]

P. Degond, F. Deluzet, A. Lozinski, J. Narski and C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations,, to appear in Comm. Math. Sci., (). Google Scholar

[14]

P. Degond, F. Deluzet, L. Navoret, A.-B. Sun and M.-H. Vignal, Asymptotic-preserving particle-in-cell method for the Vlasov-Poisson system near quasineutrality,, J. Comput. Phys., 229 (2010), 5630. doi: 10.1016/j.jcp.2010.04.001. Google Scholar

[15]

P. Degond, F. Deluzet and C. Negulescu, An Asymptotic preserving scheme for strongly anisotropic elliptic problems,, Multiscale Model. Simul. \textbf{8} (2009/10), 8 (2009), 645. doi: 10.1137/090754200. Google Scholar

[16]

P. Degond, F. Deluzet, A. Sangam and M.-H. Vignal, An asymptotic preserving scheme for the Euler equations in a strong magnetic field,, J. Comput. Phys., 228 (2009), 3540. doi: 10.1016/j.jcp.2008.12.040. Google Scholar

[17]

P. Degond, H. Liu, D. Savelief and M.-H. Vignal, Numerical approximation of the Euler-Poisson-Boltzmann model in the quasi-neutral limit,, to appear in J. Sci. Comput., (). Google Scholar

[18]

P. Degond, J.-G. Liu and M.-H. Vignal, Analysis of an asymptotic-preserving scheme for the Euler-Poisson system in the quasi-neutral limit,, J. Numer. Anal., 46 (2008), 1298. doi: 10.1137/070690584. Google Scholar

[19]

P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation,, Commun. Comput. Phys., 10 (2011), 1. Google Scholar

[20]

W. D. D'haeseleer, W. N. G. Hitchon, J. D. Callen and J. L. Shohet, "Flux Coordinates and Magnetic Field Structure. A Guide to a Fundamental Tool of Plasma Theory,", Springer Series in Computational Physics, (1991). Google Scholar

[21]

W. Dorland and G. Hammett, Gyrofluid turbulence models with kinetic effects,, Phys. Fluids B, 5 (1993), 812. doi: 10.1063/1.860934. Google Scholar

[22]

D.-H. Dubin, J.-A. Krommes, C. Oberman and W.-W. Lee, Nonlinear gyrokinetic equations,, Phys. Fluids, 26 (1983), 3524. doi: 10.1063/1.864113. Google Scholar

[23]

G.-L. Falchetto and M. Ottaviani, Effect of collisional zonal-flow damping on flux-driven turbulent transport,, Phys. Rev. Lett., 92 (2004). doi: 10.1103/PhysRevLett.92.025002. Google Scholar

[24]

F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources,, J. Comput. Phys., 229 (2010), 7625. doi: 10.1016/j.jcp.2010.06.017. Google Scholar

[25]

F. Filbet and S. Jin, An asymptotic-preserving scheme for the ES-BGK model of the Boltzmann equation,, J. Sci. Comput., 46 (2011), 204. doi: 10.1007/s10915-010-9394-x. Google Scholar

[26]

E. Frénod and A. Mouton, Two-dimensional finite larmor radius approximation in canonical gyrokinetic coordinates,, J. Pure Appl. Math.: Advances Appl., 4 (2010), 135. Google Scholar

[27]

X. Garbet, C. Bourdelle, G.-T. Hoang, P. Maget, S. Benkadda, P. Beyer, C. Figarella, I. Voitsekovitch, O. Agullo and N. Bian, Global simulations of ion turbulence with magnetic shear reversal,, Phys. Plasmas, 8 (2001), 2793. doi: 10.1063/1.1367320. Google Scholar

[28]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Gendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclacik and L. Villard, A drift-kinetic semi-lagrangian 4D code for ion turbulence simulation,, J. Comput. Phys., 217 (2006), 395. doi: 10.1016/j.jcp.2006.01.023. Google Scholar

[29]

V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Gendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse and P. Bertrand, Computing ITG turbulence with a full-f semi-lagrangian code,, Comm. Nonlinear Sci. Numer. Simul., 13 (2008), 81. doi: 10.1016/j.cnsns.2007.05.016. Google Scholar

[30]

G.-W. Hammett, M.-A. Beer, W. Dorland, S.-C. Cowley and S.-A. Smith, Developments in the gyrofluid approach to tokamak turbulence simulations,, Plasmas Phys. Control. Fusion, 35 (1993), 973. doi: 10.1088/0741-3335/35/8/006. Google Scholar

[31]

A. Hasegawa and K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform plasma,, Phys. Rev. Lett., 39 (1977), 205. doi: 10.1103/PhysRevLett.39.205. Google Scholar

[32]

A. Hasegawa and M. Wakatani, Plasma edge turbulence,, Phys. Rev. Lett., 50 (1983), 682. doi: 10.1103/PhysRevLett.50.682. Google Scholar

[33]

R.-D. Hazeltine and J.-D. Meiss, "Plasma Confinement,", Dover Publications, (2003). Google Scholar

[34]

J. A. Heikkinen, S. J. Janhunen, T. P. Kiviniemi and F. Ogando, Full-f gyrokinetic method for particle simulation of tokamak transport,, J. Comput. Phys., 227 (2008), 5582. doi: 10.1016/j.jcp.2008.02.013. Google Scholar

[35]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations,, SIAM J. Sci. Comput., 21 (1999), 441. doi: 10.1137/S1064827598334599. Google Scholar

[36]

A. Klar, An asymptotic-preserving numerical scheme for kinetic equations in the low Mach number limit,, SIAM J. Numer. Anal., 36 (2009), 1507. doi: 10.1137/S0036142997321765. Google Scholar

[37]

W.-W. Lee, Gyrokinetic approach in particle simulation,, Phys. Fluids, 26 (1983), 555. doi: 10.1063/1.864140. Google Scholar

[38]

W.-W. Lee, Gyrokinetic particle simulation model,, J. Comput. Phys., 72 (1987), 243. doi: 10.1016/0021-9991(87)90080-5. Google Scholar

[39]

M. Lemou and L. Mieussens, A new asymptotic-preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit,, SIAM J. Sci. Comput., 31 (2008), 334. doi: 10.1137/07069479X. Google Scholar

[40]

R. LeVeque, "Finite Volume Methods for Hyperbolic Problems,", Cambridge Texts in Applied Mathematics, (2002). doi: 10.1017/CBO9780511791253. Google Scholar

[41]

R. G. Littlejohn, A guiding center Hamiltonian: A new approach,, J. Math. Phys., 20 (1979), 2445. doi: 10.1063/1.524053. Google Scholar

[42]

R. G. McLarren and R. B. Lowrie, The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws,, J. Comput. Phys., 227 (2008), 9711. doi: 10.1016/j.jcp.2008.07.012. Google Scholar

[43]

K. Miyamoto, "Controlled Fusion and Plasma Physics,", Chapman & Hall, (2007). Google Scholar

[44]

M. Ottaviani, An alternative approach to field-aligned coordinates for plasma turbulence simulations,, preprint, (). Google Scholar

[45]

M. Ottaviani and G. Manfredi, The gyro-radius scaling of ion thermal transport from global numerical simulations of ion temperature gradient driven turbulence,, Phys. Plasmas, 6 (1999), 3267. doi: 10.1063/1.873567. Google Scholar

[46]

V.-V. Rusanov, The calculation of the interaction of non-stationary shock waves and obstacles,, J. Comp. Math. Phys., 1 (1961), 267. Google Scholar

show all references

References:
[1]

M. Beer and G. Hammett, Toroidal gyrofluid equations for simulations of tokamak turbulence,, Phys. Plasmas, 3 (1996), 4046. doi: 10.1063/1.871538. Google Scholar

[2]

R. Belaouar, N. Crouseilles, P. Degond and E. Sonnendrücker, An asymptotically stable semi-lagrangian scheme in the quasi-neutral limit,, J. Sci. Comput., 41 (2009), 341. doi: 10.1007/s10915-009-9302-4. Google Scholar

[3]

A. Brizard, "Nonlinear Gyrokinetic Tokamak Physics,", Ph.D thesis, (1990). Google Scholar

[4]

A. Brizard and T.-S. Hahm, Foundations of nonlinear gyrokinetic theory,, Rev. Mod. Phys., 79 (2007), 421. doi: 10.1103/RevModPhys.79.421. Google Scholar

[5]

S. Brull, P. Degond and F. Deluzet, Degenerate anisotropic elliptic problems and magnetized plasmas simulations,, to appear in Commun. Comput. Phys., (). Google Scholar

[6]

C. Buet, S. Cordier, B. Lucquin-Desreux and S. Mancini, Diffusion limit of the Lorentz model: Asymptotic-preserving schemes,, M2AN Math. Model. Numer. Anal. \textbf{36} (2002), 36 (2002), 631. doi: 10.1051/m2an:2002028. Google Scholar

[7]

C. Buet and B. Després, Asymptotic-Preserving and positive schemes for radiation hydrodynamics,, J. Comput. Phys., 215 (2006), 717. doi: 10.1016/j.jcp.2005.11.011. Google Scholar

[8]

J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic-preserving schemes for bubbling and flowing regimes,, J. Comput. Phys., 227 (2008), 7929. doi: 10.1016/j.jcp.2008.05.002. Google Scholar

[9]

P. Crispel, P. Degond and M.-H. Vignal, Quasi-neutral fluid models for current-carrying plasmas,, J. Comput. Phys., 205 (2005), 408. doi: 10.1016/j.jcp.2004.11.011. Google Scholar

[10]

P. Crispel, P. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit,, J. Comput. Phys., 223 (2007), 208. doi: 10.1016/j.jcp.2006.09.004. Google Scholar

[11]

P. Crispel, P. Degond and M.-H. Vignal, A plasma expansion model based on the full Euler-Poisson system,, Math. Models Methods Appl. Sci., 17 (2007), 1129. doi: 10.1142/S0218202507002224. Google Scholar

[12]

N. Crouseilles and M. Lemou, An asymptotic-preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: Diffusion and high-field scaling limits,, Kinet. Relat. Models, 4 (2011), 441. doi: 10.3934/krm.2011.4.441. Google Scholar

[13]

P. Degond, F. Deluzet, A. Lozinski, J. Narski and C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations,, to appear in Comm. Math. Sci., (). Google Scholar

[14]

P. Degond, F. Deluzet, L. Navoret, A.-B. Sun and M.-H. Vignal, Asymptotic-preserving particle-in-cell method for the Vlasov-Poisson system near quasineutrality,, J. Comput. Phys., 229 (2010), 5630. doi: 10.1016/j.jcp.2010.04.001. Google Scholar

[15]

P. Degond, F. Deluzet and C. Negulescu, An Asymptotic preserving scheme for strongly anisotropic elliptic problems,, Multiscale Model. Simul. \textbf{8} (2009/10), 8 (2009), 645. doi: 10.1137/090754200. Google Scholar

[16]

P. Degond, F. Deluzet, A. Sangam and M.-H. Vignal, An asymptotic preserving scheme for the Euler equations in a strong magnetic field,, J. Comput. Phys., 228 (2009), 3540. doi: 10.1016/j.jcp.2008.12.040. Google Scholar

[17]

P. Degond, H. Liu, D. Savelief and M.-H. Vignal, Numerical approximation of the Euler-Poisson-Boltzmann model in the quasi-neutral limit,, to appear in J. Sci. Comput., (). Google Scholar

[18]

P. Degond, J.-G. Liu and M.-H. Vignal, Analysis of an asymptotic-preserving scheme for the Euler-Poisson system in the quasi-neutral limit,, J. Numer. Anal., 46 (2008), 1298. doi: 10.1137/070690584. Google Scholar

[19]

P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation,, Commun. Comput. Phys., 10 (2011), 1. Google Scholar

[20]

W. D. D'haeseleer, W. N. G. Hitchon, J. D. Callen and J. L. Shohet, "Flux Coordinates and Magnetic Field Structure. A Guide to a Fundamental Tool of Plasma Theory,", Springer Series in Computational Physics, (1991). Google Scholar

[21]

W. Dorland and G. Hammett, Gyrofluid turbulence models with kinetic effects,, Phys. Fluids B, 5 (1993), 812. doi: 10.1063/1.860934. Google Scholar

[22]

D.-H. Dubin, J.-A. Krommes, C. Oberman and W.-W. Lee, Nonlinear gyrokinetic equations,, Phys. Fluids, 26 (1983), 3524. doi: 10.1063/1.864113. Google Scholar

[23]

G.-L. Falchetto and M. Ottaviani, Effect of collisional zonal-flow damping on flux-driven turbulent transport,, Phys. Rev. Lett., 92 (2004). doi: 10.1103/PhysRevLett.92.025002. Google Scholar

[24]

F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources,, J. Comput. Phys., 229 (2010), 7625. doi: 10.1016/j.jcp.2010.06.017. Google Scholar

[25]

F. Filbet and S. Jin, An asymptotic-preserving scheme for the ES-BGK model of the Boltzmann equation,, J. Sci. Comput., 46 (2011), 204. doi: 10.1007/s10915-010-9394-x. Google Scholar

[26]

E. Frénod and A. Mouton, Two-dimensional finite larmor radius approximation in canonical gyrokinetic coordinates,, J. Pure Appl. Math.: Advances Appl., 4 (2010), 135. Google Scholar

[27]

X. Garbet, C. Bourdelle, G.-T. Hoang, P. Maget, S. Benkadda, P. Beyer, C. Figarella, I. Voitsekovitch, O. Agullo and N. Bian, Global simulations of ion turbulence with magnetic shear reversal,, Phys. Plasmas, 8 (2001), 2793. doi: 10.1063/1.1367320. Google Scholar

[28]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Gendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclacik and L. Villard, A drift-kinetic semi-lagrangian 4D code for ion turbulence simulation,, J. Comput. Phys., 217 (2006), 395. doi: 10.1016/j.jcp.2006.01.023. Google Scholar

[29]

V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Gendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse and P. Bertrand, Computing ITG turbulence with a full-f semi-lagrangian code,, Comm. Nonlinear Sci. Numer. Simul., 13 (2008), 81. doi: 10.1016/j.cnsns.2007.05.016. Google Scholar

[30]

G.-W. Hammett, M.-A. Beer, W. Dorland, S.-C. Cowley and S.-A. Smith, Developments in the gyrofluid approach to tokamak turbulence simulations,, Plasmas Phys. Control. Fusion, 35 (1993), 973. doi: 10.1088/0741-3335/35/8/006. Google Scholar

[31]

A. Hasegawa and K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform plasma,, Phys. Rev. Lett., 39 (1977), 205. doi: 10.1103/PhysRevLett.39.205. Google Scholar

[32]

A. Hasegawa and M. Wakatani, Plasma edge turbulence,, Phys. Rev. Lett., 50 (1983), 682. doi: 10.1103/PhysRevLett.50.682. Google Scholar

[33]

R.-D. Hazeltine and J.-D. Meiss, "Plasma Confinement,", Dover Publications, (2003). Google Scholar

[34]

J. A. Heikkinen, S. J. Janhunen, T. P. Kiviniemi and F. Ogando, Full-f gyrokinetic method for particle simulation of tokamak transport,, J. Comput. Phys., 227 (2008), 5582. doi: 10.1016/j.jcp.2008.02.013. Google Scholar

[35]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations,, SIAM J. Sci. Comput., 21 (1999), 441. doi: 10.1137/S1064827598334599. Google Scholar

[36]

A. Klar, An asymptotic-preserving numerical scheme for kinetic equations in the low Mach number limit,, SIAM J. Numer. Anal., 36 (2009), 1507. doi: 10.1137/S0036142997321765. Google Scholar

[37]

W.-W. Lee, Gyrokinetic approach in particle simulation,, Phys. Fluids, 26 (1983), 555. doi: 10.1063/1.864140. Google Scholar

[38]

W.-W. Lee, Gyrokinetic particle simulation model,, J. Comput. Phys., 72 (1987), 243. doi: 10.1016/0021-9991(87)90080-5. Google Scholar

[39]

M. Lemou and L. Mieussens, A new asymptotic-preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit,, SIAM J. Sci. Comput., 31 (2008), 334. doi: 10.1137/07069479X. Google Scholar

[40]

R. LeVeque, "Finite Volume Methods for Hyperbolic Problems,", Cambridge Texts in Applied Mathematics, (2002). doi: 10.1017/CBO9780511791253. Google Scholar

[41]

R. G. Littlejohn, A guiding center Hamiltonian: A new approach,, J. Math. Phys., 20 (1979), 2445. doi: 10.1063/1.524053. Google Scholar

[42]

R. G. McLarren and R. B. Lowrie, The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws,, J. Comput. Phys., 227 (2008), 9711. doi: 10.1016/j.jcp.2008.07.012. Google Scholar

[43]

K. Miyamoto, "Controlled Fusion and Plasma Physics,", Chapman & Hall, (2007). Google Scholar

[44]

M. Ottaviani, An alternative approach to field-aligned coordinates for plasma turbulence simulations,, preprint, (). Google Scholar

[45]

M. Ottaviani and G. Manfredi, The gyro-radius scaling of ion thermal transport from global numerical simulations of ion temperature gradient driven turbulence,, Phys. Plasmas, 6 (1999), 3267. doi: 10.1063/1.873567. Google Scholar

[46]

V.-V. Rusanov, The calculation of the interaction of non-stationary shock waves and obstacles,, J. Comp. Math. Phys., 1 (1961), 267. Google Scholar

[1]

Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic & Related Models, 2011, 4 (2) : 441-477. doi: 10.3934/krm.2011.4.441

[2]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[3]

Francesca Marcellini. Free-congested and micro-macro descriptions of traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 543-556. doi: 10.3934/dcdss.2014.7.543

[4]

Mihai Bostan. Gyrokinetic models for strongly magnetized plasmas with general magnetic shape. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 257-269. doi: 10.3934/dcdss.2012.5.257

[5]

Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks & Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002

[6]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[7]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[8]

Jeffrey R. Haack, Cory D. Hauck. Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation. Kinetic & Related Models, 2008, 1 (4) : 573-590. doi: 10.3934/krm.2008.1.573

[9]

Tomas Godoy, Jean-Pierre Gossez, Sofia Paczka. On the principal eigenvalues of some elliptic problems with large drift. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 225-237. doi: 10.3934/dcds.2013.33.225

[10]

Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic & Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030

[11]

Nicolas Crouseilles, Giacomo Dimarco, Mohammed Lemou. Asymptotic preserving and time diminishing schemes for rarefied gas dynamic. Kinetic & Related Models, 2017, 10 (3) : 643-668. doi: 10.3934/krm.2017026

[12]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[13]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[14]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[15]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[16]

Stéphane Heuraux, Filipe da Silva. Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 307-328. doi: 10.3934/dcdss.2012.5.307

[17]

G. Caginalp, Emre Esenturk. Anisotropic phase field equations of arbitrary order. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 311-350. doi: 10.3934/dcdss.2011.4.311

[18]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

[19]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[20]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic & Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (22)

[Back to Top]