Citation: |
[1] |
M. Beer and G. Hammett, Toroidal gyrofluid equations for simulations of tokamak turbulence, Phys. Plasmas, 3 (1996), 4046-4064.doi: 10.1063/1.871538. |
[2] |
R. Belaouar, N. Crouseilles, P. Degond and E. Sonnendrücker, An asymptotically stable semi-lagrangian scheme in the quasi-neutral limit, J. Sci. Comput., 41 (2009), 341-365.doi: 10.1007/s10915-009-9302-4. |
[3] |
A. Brizard, "Nonlinear Gyrokinetic Tokamak Physics," Ph.D thesis, Princeton University, 1990. |
[4] |
A. Brizard and T.-S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421-468.doi: 10.1103/RevModPhys.79.421. |
[5] |
S. Brull, P. Degond and F. Deluzet, Degenerate anisotropic elliptic problems and magnetized plasmas simulations, to appear in Commun. Comput. Phys. |
[6] |
C. Buet, S. Cordier, B. Lucquin-Desreux and S. Mancini, Diffusion limit of the Lorentz model: Asymptotic-preserving schemes, M2AN Math. Model. Numer. Anal. 36 (2002), 631-655.doi: 10.1051/m2an:2002028. |
[7] |
C. Buet and B. Després, Asymptotic-Preserving and positive schemes for radiation hydrodynamics, J. Comput. Phys., 215 (2006), 717-740.doi: 10.1016/j.jcp.2005.11.011. |
[8] |
J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic-preserving schemes for bubbling and flowing regimes, J. Comput. Phys., 227 (2008), 7929-7951.doi: 10.1016/j.jcp.2008.05.002. |
[9] |
P. Crispel, P. Degond and M.-H. Vignal, Quasi-neutral fluid models for current-carrying plasmas, J. Comput. Phys., 205 (2005), 408-438.doi: 10.1016/j.jcp.2004.11.011. |
[10] |
P. Crispel, P. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit, J. Comput. Phys., 223 (2007), 208-234.doi: 10.1016/j.jcp.2006.09.004. |
[11] |
P. Crispel, P. Degond and M.-H. Vignal, A plasma expansion model based on the full Euler-Poisson system, Math. Models Methods Appl. Sci., 17 (2007), 1129-1158.doi: 10.1142/S0218202507002224. |
[12] |
N. Crouseilles and M. Lemou, An asymptotic-preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: Diffusion and high-field scaling limits, Kinet. Relat. Models, 4 (2011), 441-447.doi: 10.3934/krm.2011.4.441. |
[13] |
P. Degond, F. Deluzet, A. Lozinski, J. Narski and C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations, to appear in Comm. Math. Sci. |
[14] |
P. Degond, F. Deluzet, L. Navoret, A.-B. Sun and M.-H. Vignal, Asymptotic-preserving particle-in-cell method for the Vlasov-Poisson system near quasineutrality, J. Comput. Phys., 229 (2010), 5630-5652.doi: 10.1016/j.jcp.2010.04.001. |
[15] |
P. Degond, F. Deluzet and C. Negulescu, An Asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul. 8 (2009/10), 645-666.doi: 10.1137/090754200. |
[16] |
P. Degond, F. Deluzet, A. Sangam and M.-H. Vignal, An asymptotic preserving scheme for the Euler equations in a strong magnetic field, J. Comput. Phys., 228 (2009), 3540-3558.doi: 10.1016/j.jcp.2008.12.040. |
[17] |
P. Degond, H. Liu, D. Savelief and M.-H. Vignal, Numerical approximation of the Euler-Poisson-Boltzmann model in the quasi-neutral limit, to appear in J. Sci. Comput. |
[18] |
P. Degond, J.-G. Liu and M.-H. Vignal, Analysis of an asymptotic-preserving scheme for the Euler-Poisson system in the quasi-neutral limit, J. Numer. Anal., 46 (2008), 1298-1322.doi: 10.1137/070690584. |
[19] |
P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation, Commun. Comput. Phys., 10 (2011), 1-31. |
[20] |
W. D. D'haeseleer, W. N. G. Hitchon, J. D. Callen and J. L. Shohet, "Flux Coordinates and Magnetic Field Structure. A Guide to a Fundamental Tool of Plasma Theory," Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991. |
[21] |
W. Dorland and G. Hammett, Gyrofluid turbulence models with kinetic effects, Phys. Fluids B, 5 (1993), 812-835.doi: 10.1063/1.860934. |
[22] |
D.-H. Dubin, J.-A. Krommes, C. Oberman and W.-W. Lee, Nonlinear gyrokinetic equations, Phys. Fluids, 26 (1983), 3524-3535.doi: 10.1063/1.864113. |
[23] |
G.-L. Falchetto and M. Ottaviani, Effect of collisional zonal-flow damping on flux-driven turbulent transport, Phys. Rev. Lett., 92 (2004), 025002.doi: 10.1103/PhysRevLett.92.025002. |
[24] |
F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys., 229 (2010), 7625-7648.doi: 10.1016/j.jcp.2010.06.017. |
[25] |
F. Filbet and S. Jin, An asymptotic-preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Comput., 46 (2011), 204-224.doi: 10.1007/s10915-010-9394-x. |
[26] |
E. Frénod and A. Mouton, Two-dimensional finite larmor radius approximation in canonical gyrokinetic coordinates, J. Pure Appl. Math.: Advances Appl., 4 (2010), 135-166. |
[27] |
X. Garbet, C. Bourdelle, G.-T. Hoang, P. Maget, S. Benkadda, P. Beyer, C. Figarella, I. Voitsekovitch, O. Agullo and N. Bian, Global simulations of ion turbulence with magnetic shear reversal, Phys. Plasmas, 8 (2001), 2793-2803.doi: 10.1063/1.1367320. |
[28] |
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Gendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclacik and L. Villard, A drift-kinetic semi-lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), 395-423.doi: 10.1016/j.jcp.2006.01.023. |
[29] |
V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Gendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse and P. Bertrand, Computing ITG turbulence with a full-f semi-lagrangian code, Comm. Nonlinear Sci. Numer. Simul., 13 (2008), 81-87.doi: 10.1016/j.cnsns.2007.05.016. |
[30] |
G.-W. Hammett, M.-A. Beer, W. Dorland, S.-C. Cowley and S.-A. Smith, Developments in the gyrofluid approach to tokamak turbulence simulations, Plasmas Phys. Control. Fusion, 35 (1993), 973-985.doi: 10.1088/0741-3335/35/8/006. |
[31] |
A. Hasegawa and K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform plasma, Phys. Rev. Lett., 39 (1977), 205-208.doi: 10.1103/PhysRevLett.39.205. |
[32] |
A. Hasegawa and M. Wakatani, Plasma edge turbulence, Phys. Rev. Lett., 50 (1983), 682-686.doi: 10.1103/PhysRevLett.50.682. |
[33] |
R.-D. Hazeltine and J.-D. Meiss, "Plasma Confinement," Dover Publications, 2003. |
[34] |
J. A. Heikkinen, S. J. Janhunen, T. P. Kiviniemi and F. Ogando, Full-f gyrokinetic method for particle simulation of tokamak transport, J. Comput. Phys., 227 (2008), 5582-5609.doi: 10.1016/j.jcp.2008.02.013. |
[35] |
S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441-454.doi: 10.1137/S1064827598334599. |
[36] |
A. Klar, An asymptotic-preserving numerical scheme for kinetic equations in the low Mach number limit, SIAM J. Numer. Anal., 36 (2009), 1507-1527.doi: 10.1137/S0036142997321765. |
[37] |
W.-W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids, 26 (1983), 555-562.doi: 10.1063/1.864140. |
[38] |
W.-W. Lee, Gyrokinetic particle simulation model, J. Comput. Phys., 72 (1987), 243-269.doi: 10.1016/0021-9991(87)90080-5. |
[39] |
M. Lemou and L. Mieussens, A new asymptotic-preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31 (2008), 334-368.doi: 10.1137/07069479X. |
[40] |
R. LeVeque, "Finite Volume Methods for Hyperbolic Problems," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511791253. |
[41] |
R. G. Littlejohn, A guiding center Hamiltonian: A new approach, J. Math. Phys., 20 (1979), 2445-2458.doi: 10.1063/1.524053. |
[42] |
R. G. McLarren and R. B. Lowrie, The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws, J. Comput. Phys., 227 (2008), 9711-9726.doi: 10.1016/j.jcp.2008.07.012. |
[43] |
K. Miyamoto, "Controlled Fusion and Plasma Physics," Chapman & Hall, 2007. |
[44] |
M. Ottaviani, An alternative approach to field-aligned coordinates for plasma turbulence simulations, preprint, arXiv:1002.0748. |
[45] |
M. Ottaviani and G. Manfredi, The gyro-radius scaling of ion thermal transport from global numerical simulations of ion temperature gradient driven turbulence, Phys. Plasmas, 6 (1999), 3267-3275.doi: 10.1063/1.873567. |
[46] |
V.-V. Rusanov, The calculation of the interaction of non-stationary shock waves and obstacles, J. Comp. Math. Phys., 1 (1961), 267-279. |