Advanced Search
Article Contents
Article Contents

Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model

Abstract Related Papers Cited by
  • The present work is devoted to the simulation of a strongly magnetized plasma considered as a mixture of an ion fluid and an electron fluid. For the sake of simplicity, we assume that the model is isothermal and described by Euler equations coupled with a term representing the Lorentz force. Moreover we assume that both Euler systems are coupled through a quasi-neutrality constraint of the form $n_{i}=n_{e}$. The numerical method which is described in the present document is based on an Asymptotic-Preserving semi-discretization in time of a variant of this two-fluid Euler-Lorentz model with a small perturbation of the quasi-neutrality constraint. Firstly, we present the two-fluid model and the motivations for introducing a small perturbation into the quasi-neutrality equation, then we describe the time semi-discretization of the perturbed model and a fully-discrete finite volume scheme based on it. Finally, we present some numerical results which have been obtained with this method.
    Mathematics Subject Classification: 35J20, 35Q31, 35Q60, 65M06, 65M08, 65M12, 65N20, 76N17, 76W05, 76X05.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Beer and G. Hammett, Toroidal gyrofluid equations for simulations of tokamak turbulence, Phys. Plasmas, 3 (1996), 4046-4064.doi: 10.1063/1.871538.


    R. Belaouar, N. Crouseilles, P. Degond and E. Sonnendrücker, An asymptotically stable semi-lagrangian scheme in the quasi-neutral limit, J. Sci. Comput., 41 (2009), 341-365.doi: 10.1007/s10915-009-9302-4.


    A. Brizard, "Nonlinear Gyrokinetic Tokamak Physics," Ph.D thesis, Princeton University, 1990.


    A. Brizard and T.-S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421-468.doi: 10.1103/RevModPhys.79.421.


    S. Brull, P. Degond and F. DeluzetDegenerate anisotropic elliptic problems and magnetized plasmas simulations, to appear in Commun. Comput. Phys.


    C. Buet, S. Cordier, B. Lucquin-Desreux and S. Mancini, Diffusion limit of the Lorentz model: Asymptotic-preserving schemes, M2AN Math. Model. Numer. Anal. 36 (2002), 631-655.doi: 10.1051/m2an:2002028.


    C. Buet and B. Després, Asymptotic-Preserving and positive schemes for radiation hydrodynamics, J. Comput. Phys., 215 (2006), 717-740.doi: 10.1016/j.jcp.2005.11.011.


    J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic-preserving schemes for bubbling and flowing regimes, J. Comput. Phys., 227 (2008), 7929-7951.doi: 10.1016/j.jcp.2008.05.002.


    P. Crispel, P. Degond and M.-H. Vignal, Quasi-neutral fluid models for current-carrying plasmas, J. Comput. Phys., 205 (2005), 408-438.doi: 10.1016/j.jcp.2004.11.011.


    P. Crispel, P. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit, J. Comput. Phys., 223 (2007), 208-234.doi: 10.1016/j.jcp.2006.09.004.


    P. Crispel, P. Degond and M.-H. Vignal, A plasma expansion model based on the full Euler-Poisson system, Math. Models Methods Appl. Sci., 17 (2007), 1129-1158.doi: 10.1142/S0218202507002224.


    N. Crouseilles and M. Lemou, An asymptotic-preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: Diffusion and high-field scaling limits, Kinet. Relat. Models, 4 (2011), 441-447.doi: 10.3934/krm.2011.4.441.


    P. Degond, F. Deluzet, A. Lozinski, J. Narski and C. NegulescuDuality-based asymptotic-preserving method for highly anisotropic diffusion equations, to appear in Comm. Math. Sci.


    P. Degond, F. Deluzet, L. Navoret, A.-B. Sun and M.-H. Vignal, Asymptotic-preserving particle-in-cell method for the Vlasov-Poisson system near quasineutrality, J. Comput. Phys., 229 (2010), 5630-5652.doi: 10.1016/j.jcp.2010.04.001.


    P. Degond, F. Deluzet and C. Negulescu, An Asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul. 8 (2009/10), 645-666.doi: 10.1137/090754200.


    P. Degond, F. Deluzet, A. Sangam and M.-H. Vignal, An asymptotic preserving scheme for the Euler equations in a strong magnetic field, J. Comput. Phys., 228 (2009), 3540-3558.doi: 10.1016/j.jcp.2008.12.040.


    P. Degond, H. Liu, D. Savelief and M.-H. VignalNumerical approximation of the Euler-Poisson-Boltzmann model in the quasi-neutral limit, to appear in J. Sci. Comput.


    P. Degond, J.-G. Liu and M.-H. Vignal, Analysis of an asymptotic-preserving scheme for the Euler-Poisson system in the quasi-neutral limit, J. Numer. Anal., 46 (2008), 1298-1322.doi: 10.1137/070690584.


    P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation, Commun. Comput. Phys., 10 (2011), 1-31.


    W. D. D'haeseleer, W. N. G. Hitchon, J. D. Callen and J. L. Shohet, "Flux Coordinates and Magnetic Field Structure. A Guide to a Fundamental Tool of Plasma Theory," Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991.


    W. Dorland and G. Hammett, Gyrofluid turbulence models with kinetic effects, Phys. Fluids B, 5 (1993), 812-835.doi: 10.1063/1.860934.


    D.-H. Dubin, J.-A. Krommes, C. Oberman and W.-W. Lee, Nonlinear gyrokinetic equations, Phys. Fluids, 26 (1983), 3524-3535.doi: 10.1063/1.864113.


    G.-L. Falchetto and M. Ottaviani, Effect of collisional zonal-flow damping on flux-driven turbulent transport, Phys. Rev. Lett., 92 (2004), 025002.doi: 10.1103/PhysRevLett.92.025002.


    F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys., 229 (2010), 7625-7648.doi: 10.1016/j.jcp.2010.06.017.


    F. Filbet and S. Jin, An asymptotic-preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Comput., 46 (2011), 204-224.doi: 10.1007/s10915-010-9394-x.


    E. Frénod and A. Mouton, Two-dimensional finite larmor radius approximation in canonical gyrokinetic coordinates, J. Pure Appl. Math.: Advances Appl., 4 (2010), 135-166.


    X. Garbet, C. Bourdelle, G.-T. Hoang, P. Maget, S. Benkadda, P. Beyer, C. Figarella, I. Voitsekovitch, O. Agullo and N. Bian, Global simulations of ion turbulence with magnetic shear reversal, Phys. Plasmas, 8 (2001), 2793-2803.doi: 10.1063/1.1367320.


    V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Gendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclacik and L. Villard, A drift-kinetic semi-lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), 395-423.doi: 10.1016/j.jcp.2006.01.023.


    V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Gendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse and P. Bertrand, Computing ITG turbulence with a full-f semi-lagrangian code, Comm. Nonlinear Sci. Numer. Simul., 13 (2008), 81-87.doi: 10.1016/j.cnsns.2007.05.016.


    G.-W. Hammett, M.-A. Beer, W. Dorland, S.-C. Cowley and S.-A. Smith, Developments in the gyrofluid approach to tokamak turbulence simulations, Plasmas Phys. Control. Fusion, 35 (1993), 973-985.doi: 10.1088/0741-3335/35/8/006.


    A. Hasegawa and K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform plasma, Phys. Rev. Lett., 39 (1977), 205-208.doi: 10.1103/PhysRevLett.39.205.


    A. Hasegawa and M. Wakatani, Plasma edge turbulence, Phys. Rev. Lett., 50 (1983), 682-686.doi: 10.1103/PhysRevLett.50.682.


    R.-D. Hazeltine and J.-D. Meiss, "Plasma Confinement," Dover Publications, 2003.


    J. A. Heikkinen, S. J. Janhunen, T. P. Kiviniemi and F. Ogando, Full-f gyrokinetic method for particle simulation of tokamak transport, J. Comput. Phys., 227 (2008), 5582-5609.doi: 10.1016/j.jcp.2008.02.013.


    S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441-454.doi: 10.1137/S1064827598334599.


    A. Klar, An asymptotic-preserving numerical scheme for kinetic equations in the low Mach number limit, SIAM J. Numer. Anal., 36 (2009), 1507-1527.doi: 10.1137/S0036142997321765.


    W.-W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids, 26 (1983), 555-562.doi: 10.1063/1.864140.


    W.-W. Lee, Gyrokinetic particle simulation model, J. Comput. Phys., 72 (1987), 243-269.doi: 10.1016/0021-9991(87)90080-5.


    M. Lemou and L. Mieussens, A new asymptotic-preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31 (2008), 334-368.doi: 10.1137/07069479X.


    R. LeVeque, "Finite Volume Methods for Hyperbolic Problems," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511791253.


    R. G. Littlejohn, A guiding center Hamiltonian: A new approach, J. Math. Phys., 20 (1979), 2445-2458.doi: 10.1063/1.524053.


    R. G. McLarren and R. B. Lowrie, The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws, J. Comput. Phys., 227 (2008), 9711-9726.doi: 10.1016/j.jcp.2008.07.012.


    K. Miyamoto, "Controlled Fusion and Plasma Physics," Chapman & Hall, 2007.


    M. OttavianiAn alternative approach to field-aligned coordinates for plasma turbulence simulations, preprint, arXiv:1002.0748.


    M. Ottaviani and G. Manfredi, The gyro-radius scaling of ion thermal transport from global numerical simulations of ion temperature gradient driven turbulence, Phys. Plasmas, 6 (1999), 3267-3275.doi: 10.1063/1.873567.


    V.-V. Rusanov, The calculation of the interaction of non-stationary shock waves and obstacles, J. Comp. Math. Phys., 1 (1961), 267-279.

  • 加载中

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint