March  2012, 5(1): 113-128. doi: 10.3934/krm.2012.5.113

Estimates of solutions of linear neutron transport equation at large time and spectral singularities

1. 

Laboratory of Quantum Networks and Department of Mathematical Physic, Faculty of Physics, St.Petersburg State University, 198504, Saint Petersburg, Russian Federation

Received  August 2010 Revised  August 2011 Published  January 2012

The spectral analysis of a dissipative linear transport operator with a polynomial collision integral by the Szőkefalvi-Nagy - Foiaş functional model is given. An exact estimate for the remainder in the asymptotic of the corresponding evolution semigroup is proved in the isotropic case. In the general case, it is shown that the operator has at most finitely many eigenvalues and spectral singularities and an absolutely continuous essential spectrum. An upper estimate for the remainder is established.
Citation: Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113
References:
[1]

B. Sz.-Nagy and C. Foiaş, "Analyse Harmonique des Opérateurs de l'Espase de Hilbert,", (French) [Harmonic Analysis of Operators in Hilbert Space], (1967).   Google Scholar

[2]

J. Lehner, The spectrum of the neutron transport operator for the infinite slab,, J. Math. Mech., 11 (1962), 173.   Google Scholar

[3]

J. Lehner and G. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons,, Comm. Pure Appl. Math., 8 (1955), 217.  doi: 10.1002/cpa.3160080202.  Google Scholar

[4]

J. Lehner and G. Wing, Solution of the linearized Boltzmann transport equation for the slab geometry,, Duke Math. J., 23 (1956), 125.  doi: 10.1215/S0012-7094-56-02312-2.  Google Scholar

[5]

Yu. Kuperin, S. Naboko and R. Romanov, Spectral analysis of the transport operator: A functional model approach,, Indiana Univ. Math. J., 51 (2002), 1389.  doi: 10.1512/iumj.2002.51.2180.  Google Scholar

[6]

B. S. Pavlov, On separation conditions for the spectral components of a dissipative operator,, Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123.   Google Scholar

[7]

M. A. Naĭmark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis,, (Russian) Trudy Mosk. Mat. Obšč., 3 (1954), 181.   Google Scholar

[8]

B. S. Pavlov, Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model,, in, 65 (1996), 87.   Google Scholar

[9]

S. N. Naboko, Functional model of perturbation theory and its applications to scattering theory,, (Russian) Boundary value problems of mathematical physics, 10 (1980), 86.   Google Scholar

[10]

S. N. Naboko, On the conditions for existence of wave operators in the nonselfadjoint case,, (Russian) in, 157 (1987), 132.   Google Scholar

[11]

S. Naboko and R. Romanov, Spectral singularities and asymptotics of contractive semigroups. I,, Acta Sci. Math. (Szeged), 70 (2004), 379.   Google Scholar

[12]

N. K. Nikol'skiĭ, "Treatise on the Shift Operator. Spectral Function Theory,", With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, 273 (1986).   Google Scholar

[13]

R. Romanov, A remark on equivalence of weak and strong definitions of the absolutely continuous subspace for nonself-adjoint operators,, in, 154 (2004), 179.   Google Scholar

[14]

L. A.Sahnovič, Dissipative operators with absolutely continuous spectrum,, (Russian) Trudy Moskov. Mat. Obšč., 19 (1968), 211.   Google Scholar

[15]

A. S. Tikhonov, Functional model and duality of spectral components for operators with continuous spectrum on a curve,, (Russian) Algebra i Analiz, 14 (2002), 158.   Google Scholar

[16]

R. Romanov and M. Tihomirov, On the selfadjoint subspace of the one-velocity transport operator,, Math. Notes, 89 (2011), 106.  doi: 10.1134/S0001434611010111.  Google Scholar

show all references

References:
[1]

B. Sz.-Nagy and C. Foiaş, "Analyse Harmonique des Opérateurs de l'Espase de Hilbert,", (French) [Harmonic Analysis of Operators in Hilbert Space], (1967).   Google Scholar

[2]

J. Lehner, The spectrum of the neutron transport operator for the infinite slab,, J. Math. Mech., 11 (1962), 173.   Google Scholar

[3]

J. Lehner and G. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons,, Comm. Pure Appl. Math., 8 (1955), 217.  doi: 10.1002/cpa.3160080202.  Google Scholar

[4]

J. Lehner and G. Wing, Solution of the linearized Boltzmann transport equation for the slab geometry,, Duke Math. J., 23 (1956), 125.  doi: 10.1215/S0012-7094-56-02312-2.  Google Scholar

[5]

Yu. Kuperin, S. Naboko and R. Romanov, Spectral analysis of the transport operator: A functional model approach,, Indiana Univ. Math. J., 51 (2002), 1389.  doi: 10.1512/iumj.2002.51.2180.  Google Scholar

[6]

B. S. Pavlov, On separation conditions for the spectral components of a dissipative operator,, Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123.   Google Scholar

[7]

M. A. Naĭmark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis,, (Russian) Trudy Mosk. Mat. Obšč., 3 (1954), 181.   Google Scholar

[8]

B. S. Pavlov, Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model,, in, 65 (1996), 87.   Google Scholar

[9]

S. N. Naboko, Functional model of perturbation theory and its applications to scattering theory,, (Russian) Boundary value problems of mathematical physics, 10 (1980), 86.   Google Scholar

[10]

S. N. Naboko, On the conditions for existence of wave operators in the nonselfadjoint case,, (Russian) in, 157 (1987), 132.   Google Scholar

[11]

S. Naboko and R. Romanov, Spectral singularities and asymptotics of contractive semigroups. I,, Acta Sci. Math. (Szeged), 70 (2004), 379.   Google Scholar

[12]

N. K. Nikol'skiĭ, "Treatise on the Shift Operator. Spectral Function Theory,", With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, 273 (1986).   Google Scholar

[13]

R. Romanov, A remark on equivalence of weak and strong definitions of the absolutely continuous subspace for nonself-adjoint operators,, in, 154 (2004), 179.   Google Scholar

[14]

L. A.Sahnovič, Dissipative operators with absolutely continuous spectrum,, (Russian) Trudy Moskov. Mat. Obšč., 19 (1968), 211.   Google Scholar

[15]

A. S. Tikhonov, Functional model and duality of spectral components for operators with continuous spectrum on a curve,, (Russian) Algebra i Analiz, 14 (2002), 158.   Google Scholar

[16]

R. Romanov and M. Tihomirov, On the selfadjoint subspace of the one-velocity transport operator,, Math. Notes, 89 (2011), 106.  doi: 10.1134/S0001434611010111.  Google Scholar

[1]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[3]

Zhonghui Li, Xiangyong Chen, Jianlong Qiu, Tongshui Xia. A novel Chebyshev-collocation spectral method for solving the transport equation. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020080

[4]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[5]

Robert S. Strichartz. Average error for spectral asymptotics on surfaces. Communications on Pure & Applied Analysis, 2016, 15 (1) : 9-39. doi: 10.3934/cpaa.2016.15.9

[6]

R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242

[7]

Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239

[8]

Nakao Hayashi, Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the modified witham equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1407-1448. doi: 10.3934/cpaa.2018069

[9]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[10]

Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309

[11]

Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic & Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036

[12]

Shota Sato, Eiji Yanagida. Appearance of anomalous singularities in a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 387-405. doi: 10.3934/cpaa.2012.11.387

[13]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[14]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[15]

Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020070

[16]

Josef DiblÍk, Rigoberto Medina. Exact asymptotics of positive solutions to Dickman equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 101-121. doi: 10.3934/dcdsb.2018007

[17]

Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 725-735. doi: 10.3934/dcdss.2014.7.725

[18]

Sze-Man Ngai, Wei Tang, Yuanyuan Xie. Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1849-1887. doi: 10.3934/dcds.2018076

[19]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Spectral theory and time asymptotics of size-structured two-phase population models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2969-3004. doi: 10.3934/dcdsb.2020048

[20]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic & Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]