March  2012, 5(1): 113-128. doi: 10.3934/krm.2012.5.113

Estimates of solutions of linear neutron transport equation at large time and spectral singularities

1. 

Laboratory of Quantum Networks and Department of Mathematical Physic, Faculty of Physics, St.Petersburg State University, 198504, Saint Petersburg, Russian Federation

Received  August 2010 Revised  August 2011 Published  January 2012

The spectral analysis of a dissipative linear transport operator with a polynomial collision integral by the Szőkefalvi-Nagy - Foiaş functional model is given. An exact estimate for the remainder in the asymptotic of the corresponding evolution semigroup is proved in the isotropic case. In the general case, it is shown that the operator has at most finitely many eigenvalues and spectral singularities and an absolutely continuous essential spectrum. An upper estimate for the remainder is established.
Citation: Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113
References:
[1]

(French) [Harmonic Analysis of Operators in Hilbert Space], Masson et Cie, Paris, Académiai Kiadó, Budapest, 1967.  Google Scholar

[2]

J. Math. Mech., 11 (1962), 173-181.  Google Scholar

[3]

Comm. Pure Appl. Math., 8 (1955), 217-234. doi: 10.1002/cpa.3160080202.  Google Scholar

[4]

Duke Math. J., 23 (1956), 125-142. doi: 10.1215/S0012-7094-56-02312-2.  Google Scholar

[5]

Indiana Univ. Math. J., 51 (2002), 1389-1425. doi: 10.1512/iumj.2002.51.2180.  Google Scholar

[6]

Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123-148, 240.  Google Scholar

[7]

(Russian) Trudy Mosk. Mat. Obšč., 3 (1954), 181-270; English transl., Amer. Math. Soc. Transl. (2), 16 (1960), 103-193.  Google Scholar

[8]

in "Partial Differential Equations, VIII" (ed. M. Shubin), Encyclopaedia Math. Sci., 65, Springer, Berlin, (1996), 87-153.  Google Scholar

[9]

(Russian) Boundary value problems of mathematical physics, 10, Trudy Mat. Inst. Steklov, 147 (1980), 86-114, 203; English transl., Proc. Steklov Inst. Math., 147 (1981), 85-116.  Google Scholar

[10]

(Russian) in "Wave Propagation. Scattering Theory" (ed. M. Birman), LGU, Leningrad, (1987), 132-155; English transl., Amer. Math. Soc. Transl. Ser. 2, 157, AMS, Providence, RI, (1993), 127-149.  Google Scholar

[11]

Acta Sci. Math. (Szeged), 70 (2004), 379-403.  Google Scholar

[12]

With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, Translated from the Russian by Jaak Peetre, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 273, Springer-Verlag, Berlin, 1986.  Google Scholar

[13]

in "Spectral Methods for Operators of Mathematical Physics" (Bedlewo, 2002), Oper. Theory Adv. Appl., 154, Birkhäuser, Basel, (2004), 179-184.  Google Scholar

[14]

(Russian) Trudy Moskov. Mat. Obšč., 19 (1968), 211-270.  Google Scholar

[15]

(Russian) Algebra i Analiz, 14 (2002), 158-195; English transl., St. Petersburg Math. J., 14 (2003), 655-682.  Google Scholar

[16]

Math. Notes, 89 (2011), 106-116. doi: 10.1134/S0001434611010111.  Google Scholar

show all references

References:
[1]

(French) [Harmonic Analysis of Operators in Hilbert Space], Masson et Cie, Paris, Académiai Kiadó, Budapest, 1967.  Google Scholar

[2]

J. Math. Mech., 11 (1962), 173-181.  Google Scholar

[3]

Comm. Pure Appl. Math., 8 (1955), 217-234. doi: 10.1002/cpa.3160080202.  Google Scholar

[4]

Duke Math. J., 23 (1956), 125-142. doi: 10.1215/S0012-7094-56-02312-2.  Google Scholar

[5]

Indiana Univ. Math. J., 51 (2002), 1389-1425. doi: 10.1512/iumj.2002.51.2180.  Google Scholar

[6]

Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123-148, 240.  Google Scholar

[7]

(Russian) Trudy Mosk. Mat. Obšč., 3 (1954), 181-270; English transl., Amer. Math. Soc. Transl. (2), 16 (1960), 103-193.  Google Scholar

[8]

in "Partial Differential Equations, VIII" (ed. M. Shubin), Encyclopaedia Math. Sci., 65, Springer, Berlin, (1996), 87-153.  Google Scholar

[9]

(Russian) Boundary value problems of mathematical physics, 10, Trudy Mat. Inst. Steklov, 147 (1980), 86-114, 203; English transl., Proc. Steklov Inst. Math., 147 (1981), 85-116.  Google Scholar

[10]

(Russian) in "Wave Propagation. Scattering Theory" (ed. M. Birman), LGU, Leningrad, (1987), 132-155; English transl., Amer. Math. Soc. Transl. Ser. 2, 157, AMS, Providence, RI, (1993), 127-149.  Google Scholar

[11]

Acta Sci. Math. (Szeged), 70 (2004), 379-403.  Google Scholar

[12]

With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, Translated from the Russian by Jaak Peetre, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 273, Springer-Verlag, Berlin, 1986.  Google Scholar

[13]

in "Spectral Methods for Operators of Mathematical Physics" (Bedlewo, 2002), Oper. Theory Adv. Appl., 154, Birkhäuser, Basel, (2004), 179-184.  Google Scholar

[14]

(Russian) Trudy Moskov. Mat. Obšč., 19 (1968), 211-270.  Google Scholar

[15]

(Russian) Algebra i Analiz, 14 (2002), 158-195; English transl., St. Petersburg Math. J., 14 (2003), 655-682.  Google Scholar

[16]

Math. Notes, 89 (2011), 106-116. doi: 10.1134/S0001434611010111.  Google Scholar

[1]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[2]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

[3]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[4]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[5]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002

[6]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[7]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[8]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[11]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[12]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[13]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[14]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[15]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

[16]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[17]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[18]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[19]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[20]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]