Citation: |
[1] |
J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Diff. Eqns., 25 (1977), 342-364.doi: 10.1016/0022-0396(77)90049-3. |
[2] |
J. Batt and G. Rein, Global classical solutions of the periodic Vlasov-Poisson system in three dimensions, C. R. Academy of Sci. Paris Sér. I Math., 313 (1991), 411-416. |
[3] |
E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass, Arch. Rational Mech. Anal., 159 (2001), 85-108.doi: 10.1007/s002050100150. |
[4] |
S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass, Commun. PDE, 27 (2002), 791-808.doi: 10.1081/PDE-120002874. |
[5] |
R. Glassey, "The Cauchy Problem in Kinetic Theory,'' SIAM, Philadelphia, PA, 1996.doi: 10.1137/1.9781611971477. |
[6] |
R. Glassey and J. Schaeffer, Time decay for solutions to the linearized Vlasov equation, Trans. Th. Stat. Phys., 23 (1994), 411-453.doi: 10.1080/00411459408203873. |
[7] |
R. Glassey and J. Schaeffer, On time decay rates in Landau damping, Commun. PDE, 20 (1995), 647-676.doi: 10.1080/03605309508821107. |
[8] |
R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rat. Mech. Anal., 92 (1986), 59-90.doi: 10.1007/BF00250732. |
[9] |
E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Meth. Appl. Sci., 16 (1993), 75-86.doi: 10.1002/mma.1670160202. |
[10] |
E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov-Equation, Parts I and II, Math. Meth. Appl. Sci., 3 (1981), 229-248 and 4 (1982), 19-32. |
[11] |
P.-E. Jabin, The Vlasov-Poisson system with infinite mass and energy, J. Statist. Phys., 103 (2001), 1107-1123.doi: 10.1023/A:1010321308267. |
[12] |
R. Kurth, Das Anfangswertproblem der stellardynamik, Z. Astrophys., 30 (1952), 213-229. |
[13] |
L. D. Landau, On the vibrations of the electronic plasma, Akad. Nauk SSSR. Shurnal Eksper. Fiz., 16 (1946), 574-586. |
[14] |
P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.doi: 10.1007/BF01232273. |
[15] |
T. Okabe and S. Ukai, On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka J. Math., 15 (1978), 245-261. |
[16] |
S. Pankavich, Explicit solutions of the one-dimensional Vlasov-Poisson system with infinite mass, Math. Methods Appl. Sci., 31 (2008), 375-389.doi: 10.1002/mma.915. |
[17] |
S. Pankavich, Local existence for the one-dimensional Vlasov-Poisson system with infinite mass, Math. Methods Appl. Sci., 30 (2007), 529-548.doi: 10.1002/mma.796. |
[18] |
S. Pankavich, Global existence and increased spatial decay for the radial Vlasov-Poisson system with steady spatial asymptotics, Transport Theory Statist. Phys., 36 (2007), 531-562.doi: 10.1080/00411450701703480. |
[19] |
S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics, Comm. Partial Differential Equations, 31 (2006), 349-370. |
[20] |
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eqns., 95 (1992), 281-303. |
[21] |
J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Part. Diff. Eqns., 16 (1991), 1313-1335. |
[22] |
J. Schaeffer, Asymptotic growth bounds for the Vlasov-Poisson system, Mathematical Methods in the Applied Sciences., 34 (2011), 262-277.doi: 10.1002/mma.1354. |
[23] |
J. Schaeffer, The Vlasov-Poisson system with steady spatial asymptotics, Comm. PDE, 28 (2003), 1057-1084.doi: 10.1081/PDE-120021186. |
[24] |
J. Schaeffer, Steady spatial asymptotics for the Vlasov-Poisson system, Math. Meth. Appl. Sci., 26 (2003), 273-296.doi: 10.1002/mma.354. |
[25] |
N. G. VanKampen and B. U. Felderhof, "Theoretical Methods in Plasma Physics,'' North-Holland, Amsterdam, 1967. |
[26] |
S. Wollman, Global-in-time solutions of the two-dimensional Vlasov-Poisson system, Comm. Pure Appl. Math., 33 (1980), 173-197.doi: 10.1002/cpa.3160330205. |