Citation: |
[1] |
M. P. Bonner, "Compressible Subsonic Flow on a Staggered Grid," Master thesis, The University of British Columbia, 2007. |
[2] |
F. Cordier, P. Degond and A. Kumbaro, An asymptotic preserving scheme for the low Mach number limit of the Navier Stokes equations, preprint. |
[3] |
P. Degond, S. Jin and J.-G. Liu, Mach-number uniform asymptotic-preserving gauge schemes for compressible flows, Bulletin of the Institute of Mathematics, Academia Sinica, New Series, 2 (2007), 851-892. |
[4] |
P. Degond, P.-F. Peyrard, G. Russo and P. Villedieu, Polynomial upwind schemes for hyperbolic systems, C. R. Acad.Sci. Paris Sér. I Math., 328 (1999), 479-483.doi: 10.1016/S0764-4442(99)80194-3. |
[5] |
P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equations, Communications in Computational Physics, 10 (2011), 1-31. |
[6] |
P. M. Gresho, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. I: Theory, Computational Methods in Flow Analysis (Okayama, 1988), Int. J. Numer. Methods Fluids, 11 (1990), 587-620.doi: 10.1002/fld.1650110509. |
[7] |
P. M. Gresho and S. T. Chan, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. II: Implementation, Computational methods in flow analysis (Okayama, 1988), Int. J. Numer. Methods Fluids, 11 (1990), 621-659.doi: 10.1002/fld.1650110510. |
[8] |
F. Golse, S. Jin and C. D. Levermore, The convergence of numerical transfer schemes in diffusive regimes I: Discrete-ordinate method, SIAM J. Numer. Anal., 36 (1999), 1333-1369.doi: 10.1137/S0036142997315986. |
[9] |
S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comp., 21 (1999), 441-454.doi: 10.1137/S1064827598334599. |
[10] |
J. R. Haack and C. D. Hauck, Oscillatory behavior of asymptotic-preserving splitting methods for a linear model of diffusive relaxation, Kinetic and Related Models, 1 (2008), 573-590. |
[11] |
J. Haack, S. Jin and J. G. Liu, An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equation, preprint. |
[12] |
F. H. Harlow and A. Amsden, A numerical fluid dynamics calculation method for all flow speeds, J. Comput. Phys, 8 (1971), 197-213.doi: 10.1016/0021-9991(71)90002-7. |
[13] |
F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluid, 8 (1965), 2182-2189. |
[14] |
D. R. van der Heul, C. Vuik and P. Wesseling, A conservative pressure-correction method for flow at all speeds, Compt. & Fluids, 32 (2003), 1113-1132. |
[15] |
R. I. Issa, A. D. Gosman and A. P. Watkins, The computation of compressible and incompressible flow of fluid with a free surface, Phys. Fluids, 8 (1965), 2182-2189. |
[16] |
S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Communication on Pure and Applied Mathematics, 34 (1981), 481-524.doi: 10.1002/cpa.3160340405. |
[17] |
S. Klainerman and A. Majda, Compressible and incompressible fluids, Communication on Pure and Applied Mathematics, 35 (1982), 629-651.doi: 10.1002/cpa.3160350503. |
[18] |
R. Klein, N. Botta, T. Schneider, C. D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics, J. Eng. Math., 39 (2001), 261-343.doi: 10.1023/A:1004844002437. |
[19] |
A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comp. Phys., 160 (2000), 214-282. |
[20] |
A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numerical Methods for Partial Differential Equations, 18 (2002), 548-608. |
[21] |
A. Kurganov and D. Levy, A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations, SIAM J. Sci. Comput., 22 (2000), 1461-1488.doi: 10.1137/S1064827599360236. |
[22] |
A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comp., 23 (2001), 707-740.doi: 10.1137/S1064827500373413. |
[23] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. |
[24] |
C.-D. Munz, S. Roller, R. Klein and K. J. Geratz, The extension of incompressible flow solvers to the weakly compressible regime, Comp. Fluids, 32 (2003), 173-196.doi: 10.1016/S0045-7930(02)00010-5. |
[25] |
J. H. Park and C.-D. Munz, Multiple pressure variables methods for fluid flow at all Mach numbers, Int. J. Numer. Meth. Fluid, 49 (2005), 905-931.doi: 10.1002/fld.1032. |
[26] |
S. V. Patankar, "Numerical Heat Transfer and Fluid Flow," McGraw-Hill, New York, 1980. |
[27] |
R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I: One-dimensional flow, J. Comp. Phys., 121 (1995), 213-237.doi: 10.1016/S0021-9991(95)90034-9. |
[28] |
N. Kwatra, J. Su, J. T. Grétarsson and R. Fedkiw, A method for avoiding the acoustic time step restriction in compressible flow, J. Comp. Phys., 228 (2009), 4146-4161.doi: 10.1016/j.jcp.2009.02.027. |
[29] |
K. Nerinckx, J. Vierendeels and E. Dick, A Mach-uniform algorithm: Coupled versus segregated approach, J. Comp. Phys., 224 (2007), 314-331.doi: 10.1016/j.jcp.2007.02.008. |
[30] |
F. Rieper and G. Bader, The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime, J. Comp. Phys., 228 (2009), 2918-2933.doi: 10.1016/j.jcp.2009.01.002. |