Citation: |
[1] |
K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686-1688.doi: 10.1073/pnas.68.8.1686. |
[2] |
H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 (1949), 331-407. |
[3] |
S. R. De Groot and P. Mazur, "Non-Equilibrium Thermodynamics," North Holland, Amsterdam, 1962. |
[4] |
X.-J. Gu and D. Emerson, A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions, J. Comput. Phys., 225 (2007), 263-283.doi: 10.1016/j.jcp.2006.11.032. |
[5] |
G. M. Kremer, "An Introduction to the Boltzmann Equation and Transport Processes in Gases," Springer, Berlin, 2010.doi: 10.1007/978-3-642-11696-4. |
[6] |
C. D. Levermore and W. J. Morokoff, The Gaussian moment closure for gas dynamics, SIAM J. Appl. Math., 59 (1999), 72-96. |
[7] |
I. Müller and T. Ruggeri, "Rational Extended Thermodynamics," Second edition, With supplementary chapters by H. Struchtrup and Wolf Weiss, Springer Tracts in Natural Philosophy, 37, Springer-Verlag, New York, 1998. |
[8] |
H. C. Öttinger, "Beyond Equilibrium Thermodynamics," Wiley, Hoboken, 2005. |
[9] |
H. C. Öttinger, Reply to the comment on 'Thermodynamically admissible 13 moment equations from the Boltzmann equation', Phys. Rev. Lett., 105 (2010), 128902. |
[10] |
H. C. Öttinger, Thermodynamically admissible 13 moment equations from the Boltzmann equation, Phys. Rev. Lett., 104 (2010), 120601.doi: 10.1103/PhysRevLett.104.120601. |
[11] |
H. Struchtrup, Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials, Multiscale Model. Simul., 3 (2004/05), 221-243. doi: 10.1137/040603115. |
[12] |
H. Struchtrup, "Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory," Interaction of Mechanics and Mathematics, Springer, Berlin, 2005. |
[13] |
H. Struchtrup and M. Torrilhon, Regularization of Grad's 13-moment-equations: Derivation and linear analysis, Phys. Fluids, 15 (2003), 2668-2680.doi: 10.1063/1.1597472. |
[14] |
H. Struchtrup and M. Torrilhon, H-theorem, regularization, and boundary conditions for linearized 13 moment equations, Phys. Rev. Letters, 99 (2007), 014502.doi: 10.1103/PhysRevLett.99.014502. |
[15] |
H. Struchtrup and M. Torrilhon, Comment on 'Thermodynamically admissible 13 moment equations from the Boltzmann equation', Phys. Rev. Letters, 105 (2010) 128901.doi: 10.1103/PhysRevLett.105.128901. |
[16] |
P. Taheri, A. S. Rana, M. Torrilhon and H. Struchtrup, Macroscopic presentation of steady and unsteady rarefaction effects in the fundamental boundary value problems of gas dynamics, Continuum Mech. Thermodyn., 21 (2009), 423-443.doi: 10.1007/s00161-009-0115-3. |
[17] |
P. Taheri, M. Torrilhon and H. Struchtrup, Couette and poiseuille microflows: Analytical solutions for regularized 13-moment equations, Phys. Fluids, 21 (2009), 017102.doi: 10.1063/1.3064123. |
[18] |
M. Torrilhon, Two-dimensional bulk microflow simulations based on regularized Grad's 13-moment-equations, Multiscale Model. Simul., 5 (2006), 695-728.doi: 10.1137/050635444. |
[19] |
M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-IV-distributions, Comm. Comput. Phys., 7 (2010), 639-673. |
[20] |
M. Torrilhon, Slow rarefied flow past a sphere: Analytical solutions based on moment equations, Phys. Fluids, 22 (2010), 072001.doi: 10.1063/1.3453707. |
[21] |
M. Torrilhon and H. Struchtrup, Regularized 13-moment-equations: Shock structure calculations and comparison to Burnett models, J. Fluid Mech., 513 (2004), 171-198.doi: 10.1017/S0022112004009917. |
[22] |
M. Torrilhon and H. Struchtrup, Boundary conditions for regularized 13-moment-equations for micro-channel-flows, J. Comput. Phys., 227 (2008), 1982-2011.doi: 10.1016/j.jcp.2007.10.006. |