March  2012, 5(1): 203-221. doi: 10.3934/krm.2012.5.203

Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization

1. 

Dipartimento di matematica Ulisse Dini, Viale Morgagni 67/A, Firenze, Italy

Received  May 2011 Revised  August 2011 Published  January 2012

We derive some fluid-dynamic models for electron transport near a Dirac point in graphene. We start from a kinetic model constituted by a set of spinorial Wigner equations, we make suitable scalings (hydrodynamic or diffusive) of the model and we build moment equations, which we close through a minimum entropy principle. In order to do this we make some assumptions: the usual semiclassical approximation (ħ $\ll 1$), and two further hypothesis, namely Low Scaled Fermi Speed (LSFS) and Strongly Mixed State (SMS), which allow us to explicitly compute the closure.
Citation: Nicola Zamponi. Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization. Kinetic & Related Models, 2012, 5 (1) : 203-221. doi: 10.3934/krm.2012.5.203
References:
[1]

C. Auer, F. Schürrer and C. Ertler, Hot phonon effects on the high-field transport in metallic carbon nanotubes, Physical Review B, 74 (2006), 165409. doi: 10.1103/PhysRevB.74.165409.  Google Scholar

[2]

L. Barletti and G. Frosali, Diffusive limit of the two-band $k\cdot p$ model for semiconductors, Journal of Statistical Physics, 139 (2010), 280-306. doi: 10.1007/s10955-010-9940-9.  Google Scholar

[3]

C. Beenakker, Colloquium: Andreev reflection and Klein tunneling in graphene, Reviews of Modern Physics, 80 (2008), 1337-1354. doi: 10.1103/RevModPhys.80.1337.  Google Scholar

[4]

P. Degond and C. Ringhofer, A note on quantum moment hydrodynamics and the entropy principle, C. R. Math. Acad. Sci. Paris, 335 (2002), 967-972.  Google Scholar

[5]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, Journal of Statistical Physics, 112 (2003), 587-628. doi: 10.1023/A:1023824008525.  Google Scholar

[6]

P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, Journal of Statistical Physics, 118 (2005), 625-667. doi: 10.1007/s10955-004-8823-3.  Google Scholar

[7]

G. Folland, "Harmonic Analysis in Phase Space,'' Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989.  Google Scholar

[8]

M. Freitag, Graphene: Nanoelectronics goes flat out, Nature Nanotechnology, 3 (2008), 455-457. doi: 10.1038/nnano.2008.219.  Google Scholar

[9]

A. Jüngel, D. Matthes and J. Milšić, Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math., 67 (2006), 46-68. doi: 10.1137/050644823.  Google Scholar

[10]

A. Jüngel, "Transport Equations for Semiconductors,'' Annals of Mathematics Studies, 122, Springer-Verlag, Berlin, 2009.  Google Scholar

[11]

A. Jüngel, Dissipative quantum fluid models, to appear in Riv. Mat. Univ. Parma, 2011. Google Scholar

[12]

M. Katsnelson, K. Novoselov and A. Geim, Chiral tunneling and the Klein paradox in graphene, Nature Physics 2, 9 (2006), 620-625. doi: 10.1038/nphys384.  Google Scholar

[13]

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065. doi: 10.1007/BF02179552.  Google Scholar

[14]

E. Madelung, Quantentheorie in hydrodynamischer form, Zeitschrift für Physik A Hadrons and Nuclei, 40 (1927), 322-326. Google Scholar

[15]

L. Barletti and F. Méhats, Quantum drift-diffusion modeling of spin transport in nanostructures, Journal of Mathematical Physics, 51 (2010), 053304, 20 pp.  Google Scholar

[16]

C. Zachos, D. Fairlie and T. Curtright, eds., "Quantum Mechanics in Phase Space. An Overview with Selected Papers,'' Worl Scientific Series in 20th Century Physics, 34, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.  Google Scholar

[17]

Nicola Zamponi, "Trasporto Quantistico Degli Elettroni nel Grafene: Un Approccio Cinetico e Fluidodinamico,'' Tesi di Laurea Specialistica, Università di Firenze, Facoltà di Scienze Mat. Fis. Nat., 2009. Google Scholar

[18]

N. Zamponi and L. Barletti, Quantum electronic transport in graphene: A kinetic and fluid-dynamic approach, Mathematical Methods in the Applied Sciences, 34 (2011), 807-818. doi: 10.1002/mma.1403.  Google Scholar

show all references

References:
[1]

C. Auer, F. Schürrer and C. Ertler, Hot phonon effects on the high-field transport in metallic carbon nanotubes, Physical Review B, 74 (2006), 165409. doi: 10.1103/PhysRevB.74.165409.  Google Scholar

[2]

L. Barletti and G. Frosali, Diffusive limit of the two-band $k\cdot p$ model for semiconductors, Journal of Statistical Physics, 139 (2010), 280-306. doi: 10.1007/s10955-010-9940-9.  Google Scholar

[3]

C. Beenakker, Colloquium: Andreev reflection and Klein tunneling in graphene, Reviews of Modern Physics, 80 (2008), 1337-1354. doi: 10.1103/RevModPhys.80.1337.  Google Scholar

[4]

P. Degond and C. Ringhofer, A note on quantum moment hydrodynamics and the entropy principle, C. R. Math. Acad. Sci. Paris, 335 (2002), 967-972.  Google Scholar

[5]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, Journal of Statistical Physics, 112 (2003), 587-628. doi: 10.1023/A:1023824008525.  Google Scholar

[6]

P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, Journal of Statistical Physics, 118 (2005), 625-667. doi: 10.1007/s10955-004-8823-3.  Google Scholar

[7]

G. Folland, "Harmonic Analysis in Phase Space,'' Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989.  Google Scholar

[8]

M. Freitag, Graphene: Nanoelectronics goes flat out, Nature Nanotechnology, 3 (2008), 455-457. doi: 10.1038/nnano.2008.219.  Google Scholar

[9]

A. Jüngel, D. Matthes and J. Milšić, Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math., 67 (2006), 46-68. doi: 10.1137/050644823.  Google Scholar

[10]

A. Jüngel, "Transport Equations for Semiconductors,'' Annals of Mathematics Studies, 122, Springer-Verlag, Berlin, 2009.  Google Scholar

[11]

A. Jüngel, Dissipative quantum fluid models, to appear in Riv. Mat. Univ. Parma, 2011. Google Scholar

[12]

M. Katsnelson, K. Novoselov and A. Geim, Chiral tunneling and the Klein paradox in graphene, Nature Physics 2, 9 (2006), 620-625. doi: 10.1038/nphys384.  Google Scholar

[13]

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065. doi: 10.1007/BF02179552.  Google Scholar

[14]

E. Madelung, Quantentheorie in hydrodynamischer form, Zeitschrift für Physik A Hadrons and Nuclei, 40 (1927), 322-326. Google Scholar

[15]

L. Barletti and F. Méhats, Quantum drift-diffusion modeling of spin transport in nanostructures, Journal of Mathematical Physics, 51 (2010), 053304, 20 pp.  Google Scholar

[16]

C. Zachos, D. Fairlie and T. Curtright, eds., "Quantum Mechanics in Phase Space. An Overview with Selected Papers,'' Worl Scientific Series in 20th Century Physics, 34, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.  Google Scholar

[17]

Nicola Zamponi, "Trasporto Quantistico Degli Elettroni nel Grafene: Un Approccio Cinetico e Fluidodinamico,'' Tesi di Laurea Specialistica, Università di Firenze, Facoltà di Scienze Mat. Fis. Nat., 2009. Google Scholar

[18]

N. Zamponi and L. Barletti, Quantum electronic transport in graphene: A kinetic and fluid-dynamic approach, Mathematical Methods in the Applied Sciences, 34 (2011), 807-818. doi: 10.1002/mma.1403.  Google Scholar

[1]

Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1

[2]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[3]

Li Chen, Xiu-Qing Chen, Ansgar Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic & Related Models, 2011, 4 (4) : 1049-1062. doi: 10.3934/krm.2011.4.1049

[4]

José Luis López, Jesús Montejo-Gámez. On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models. Kinetic & Related Models, 2012, 5 (3) : 517-536. doi: 10.3934/krm.2012.5.517

[5]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[6]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[7]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, 2021, 14 (3) : 407-427. doi: 10.3934/krm.2021010

[8]

Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119

[9]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[10]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[11]

James B. Kennedy, Jonathan Rohleder. On the hot spots of quantum graphs. Communications on Pure & Applied Analysis, 2021, 20 (9) : 3029-3063. doi: 10.3934/cpaa.2021095

[12]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[13]

Jin-Cheng Jiang, Chi-Kun Lin, Shuanglin Shao. On one dimensional quantum Zakharov system. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5445-5475. doi: 10.3934/dcds.2016040

[14]

Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287

[15]

Ruikuan Liu, Tian Ma, Shouhong Wang, Jiayan Yang. Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1411-1448. doi: 10.3934/dcdsb.2018214

[16]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[17]

Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557

[18]

Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34.

[19]

Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375

[20]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]