\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ghost effect for a vapor-vapor mixture

Abstract / Introduction Related Papers Cited by
  • This paper studies the non linear Boltzmann equation for a two component gas at the small Knudsen number regime. The solution is found from a truncated Hilbert expansion. The first order of the fluid equations shows the ghost effect. The fluid system is solved when the boundary conditions are close enough to each other. Next the boundary conditions for the kinetic system are satisfied by adding for the first and the second order terms of the expansion Knudsen terms. The construction of such boundary layers requires the study of a Milne problem for mixtures. In a last part the rest term of the expansion is rigorously controled by using a new decomposition into a low and a high velocity part.
    Mathematics Subject Classification: 82B40, 76P05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation, in "Rarefied Gas Dynamic" (eds. T. J. Bartel and M. A. Gallis), AIP, Melville, (2001), 565-574.

    [2]

    K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture, Journ. Stat. Phys., 112 (2003), 629-655.doi: 10.1023/A:1023876025363.

    [3]

    K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas, Physics of Fluids, 10 (1998), 1519-1532.doi: 10.1063/1.869671.

    [4]

    K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas, European Journal of Mechanics B Fluids, 22 (2003), 51-71.doi: 10.1016/S0997-7546(02)00008-0.

    [5]

    L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51-97.

    [6]

    L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 125-187.doi: 10.1007/s00205-010-0292-z.

    [7]

    L. Arkeryd, R. Esposito, R. Marra and A. NouriGhost effect by curvature in planar Couette flow, to appear in Kinetic and Related Models.

    [8]

    L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits, Journ. Stat. Phys., 118 (2005), 849-881.doi: 10.1007/s10955-004-2708-3.

    [9]

    L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation, Journ. Stat. Phys., 124 (2006), 401-443.doi: 10.1007/s10955-005-8008-8.

    [10]

    C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas, Commun. Pure and Applied Math., 39 (1986), 323-352.

    [11]

    S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes," Ph.D thesis, Université de Provence, 2006.

    [12]

    S. Brull, The stationary Boltzmann equation for a two-component gas in the slab, Math. Meth. Appl. Sci., 31 (2008), 153-178.doi: 10.1002/mma.897.

    [13]

    S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab, Math. Meth. Appl. Sci., 31 (2008), 1653-1666.doi: 10.1002/mma.991.

    [14]

    S. Brull, Problem of evaporation-condensation for a two component gas in the slab, Kinetic and Related Models, 1 (2008), 185-221.doi: 10.3934/krm.2008.1.185.

    [15]

    S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses, Adv. in Diff. Eq., 15 (2010), 1103-1124.

    [16]

    R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. Pure and Applied Math., 33 (1980), 651-666.doi: 10.1002/cpa.3160330506.

    [17]

    C. Cercignani, "The Boltzman Equation and its Applications," Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988.

    [18]

    C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.

    [19]

    L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog, preprint, 1994.

    [20]

    R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab, Comm. Math. Phys., 160 (1994), 49-80.doi: 10.1007/BF02099789.

    [21]

    R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation, Journ. Stat. Phys., 78 (1995), 389-412.doi: 10.1007/BF02183355.

    [22]

    H. Grad, Asymptotic theory of the Boltzmann equation, Physics of Fluids, 6 (1963), 147-181.doi: 10.1063/1.1706716.

    [23]

    H. Grad, Asymptotic theory of the Boltzmann equation. II, in "1963 Rarefied Gas Dyn." (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I, Academic Press, New York, (1962), 26-59.

    [24]

    H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, in "1965 Proc. Symp. Appl. Math.," Vol. XVII, Amer. Math. Soc., Providence, RI, (1965), 154-183.

    [25]

    Y. Sone, "Kinetic Theory and Fluid Dynamics," Modeling and Simulations in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002.doi: 10.1007/978-1-4612-0061-1.

    [26]

    Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation, Physics of Fluids, 8 (1996), 628-638. Erratum: Physics of Fluids, 8 (1996), 841.doi: 10.1063/1.869133.

    [27]

    Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit, Phys. Fluids, 16 (2004), 952-971.doi: 10.1063/1.1649738.

    [28]

    S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation, Physics of Fluids, 16 (2004), 79.doi: 10.1063/1.1630324.

    [29]

    S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit, Physics of Fluids, 16 (2004), 7.doi: 10.1063/1.1723464.

    [30]

    S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory, Physics of Fluids, 11 (1999), 2743-2756.doi: 10.1063/1.870133.

    [31]

    S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation, in "The Sixteenth International Conference on Transport Theory, Part I" (Atlanta, GA, 1999), Transport Theory Statist. Phys., 30 (2001), 205-237. Erratum: Transport Theory an Statistical Physic, 31 (2001), 289.

    [32]

    R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio, Physics of Fluids, 30 (1987), 2073.doi: 10.1063/1.866142.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return