Advanced Search
Article Contents
Article Contents

The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth

Abstract Related Papers Cited by
  • In this paper we present a class of fragmentation semigroups which are compact in a scale of spaces defined in terms of finite higher moments. We use this compactness result to analyse the long time behaviour of such semigroups and, in particular, to prove that they have the asynchronous growth property. We note that, despite compactness, this growth property is not automatic as the fragmentation semigroups are not irreducible.
    Mathematics Subject Classification: Primary: 34G10; Secondary: 35B40, 35P05, 47D06, 45K05, 80A30.


    \begin{equation} \\ \end{equation}
  • [1]

    W. Arendt and A. Rhandi, Perturbation of positive semigroups, Arch. Math. (Basel), 56 (1991), 107-119.doi: 10.1007/BF01200341.


    J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys., 61 (1990), 203-234.doi: 10.1007/BF01013961.


    J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006.


    J. Banasiak, Positivity in natural sciences, in "Multiscale Problems in the Life Sciences," Lecture Notes in Math., 1940, Springer, Berlin, (2008), 1-89.


    J. Banasiak, On an irregular dynamics of certain fragmentation semigroups, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 105 (2011), 361-377.doi: 10.1007/s13398-011-0015-9.


    J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates, Nonlinear Anal. Real World Appl., 13 (2012), 91-105.doi: 10.1016/j.nonrwa.2011.07.016.


    J. Carr and F. P. da Costa, Asymptotic behaviour of solutions to the coagulation-fragmentation equations. II. Weak fragmentation, J. Stat. Phys., 77 (1994), 89-123.doi: 10.1007/BF02186834.


    Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter, "One-Parameter Semigroups," CWI Monographs, 5, North Holland Publishing Co., Amsterdam, 1987.


    F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation, J. Math. Anal. Appl., 192 (1995), 892-914.doi: 10.1006/jmaa.1995.1210.


    K.-J. Engel and R. Nagel, "One Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.


    K.-J. Engel and R. Nagel, "A Short Course on One Parameter Semigroups," Springer, New York, 2005.


    P. Glendinning, "Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1994.


    T. Kato, "Perturbation Theory for Linear Operators," Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.


    P. Laurençot, The discrete coagulation equations with multiple fragmentation, Proc. Edinburgh Math. Soc. (2), 45 (2002), 67-82.


    A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation, Physica D, 239 (2010), 1436-1445.doi: 10.1016/j.physd.2009.03.013.


    K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.doi: 10.1006/jmaa.2000.6968.


    R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Pol. Ac. Sci. Math., 43 (1995), 245-262.


    A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss, J. Evol. Equ., 12 (2012), 181-201.doi: 10.1007/s00028-011-0129-8.

  • 加载中

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint