Citation: |
[1] |
W. Arendt and A. Rhandi, Perturbation of positive semigroups, Arch. Math. (Basel), 56 (1991), 107-119.doi: 10.1007/BF01200341. |
[2] |
J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys., 61 (1990), 203-234.doi: 10.1007/BF01013961. |
[3] |
J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006. |
[4] |
J. Banasiak, Positivity in natural sciences, in "Multiscale Problems in the Life Sciences," Lecture Notes in Math., 1940, Springer, Berlin, (2008), 1-89. |
[5] |
J. Banasiak, On an irregular dynamics of certain fragmentation semigroups, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 105 (2011), 361-377.doi: 10.1007/s13398-011-0015-9. |
[6] |
J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates, Nonlinear Anal. Real World Appl., 13 (2012), 91-105.doi: 10.1016/j.nonrwa.2011.07.016. |
[7] |
J. Carr and F. P. da Costa, Asymptotic behaviour of solutions to the coagulation-fragmentation equations. II. Weak fragmentation, J. Stat. Phys., 77 (1994), 89-123.doi: 10.1007/BF02186834. |
[8] |
Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter, "One-Parameter Semigroups," CWI Monographs, 5, North Holland Publishing Co., Amsterdam, 1987. |
[9] |
F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation, J. Math. Anal. Appl., 192 (1995), 892-914.doi: 10.1006/jmaa.1995.1210. |
[10] |
K.-J. Engel and R. Nagel, "One Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[11] |
K.-J. Engel and R. Nagel, "A Short Course on One Parameter Semigroups," Springer, New York, 2005. |
[12] |
P. Glendinning, "Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1994. |
[13] |
T. Kato, "Perturbation Theory for Linear Operators," Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. |
[14] |
P. Laurençot, The discrete coagulation equations with multiple fragmentation, Proc. Edinburgh Math. Soc. (2), 45 (2002), 67-82. |
[15] |
A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation, Physica D, 239 (2010), 1436-1445.doi: 10.1016/j.physd.2009.03.013. |
[16] |
K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.doi: 10.1006/jmaa.2000.6968. |
[17] |
R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Pol. Ac. Sci. Math., 43 (1995), 245-262. |
[18] |
A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss, J. Evol. Equ., 12 (2012), 181-201.doi: 10.1007/s00028-011-0129-8. |