June  2012, 5(2): 223-236. doi: 10.3934/krm.2012.5.223

The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth

1. 

School of Mathematical Sciences, UKZN, Durban, South Africa

2. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland

Received  August 2011 Revised  November 2011 Published  April 2012

In this paper we present a class of fragmentation semigroups which are compact in a scale of spaces defined in terms of finite higher moments. We use this compactness result to analyse the long time behaviour of such semigroups and, in particular, to prove that they have the asynchronous growth property. We note that, despite compactness, this growth property is not automatic as the fragmentation semigroups are not irreducible.
Citation: Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic & Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223
References:
[1]

W. Arendt and A. Rhandi, Perturbation of positive semigroups,, Arch. Math. (Basel), 56 (1991), 107.  doi: 10.1007/BF01200341.  Google Scholar

[2]

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation,, J. Stat. Phys., 61 (1990), 203.  doi: 10.1007/BF01013961.  Google Scholar

[3]

J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications,", Springer Monographs in Mathematics, (2006).   Google Scholar

[4]

J. Banasiak, Positivity in natural sciences, in "Multiscale Problems in the Life Sciences,", Lecture Notes in Math., 1940 (2008), 1.   Google Scholar

[5]

J. Banasiak, On an irregular dynamics of certain fragmentation semigroups,, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 105 (2011), 361.  doi: 10.1007/s13398-011-0015-9.  Google Scholar

[6]

J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates,, Nonlinear Anal. Real World Appl., 13 (2012), 91.  doi: 10.1016/j.nonrwa.2011.07.016.  Google Scholar

[7]

J. Carr and F. P. da Costa, Asymptotic behaviour of solutions to the coagulation-fragmentation equations. II. Weak fragmentation,, J. Stat. Phys., 77 (1994), 89.  doi: 10.1007/BF02186834.  Google Scholar

[8]

Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter, "One-Parameter Semigroups,", CWI Monographs, 5 (1987).   Google Scholar

[9]

F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation,, J. Math. Anal. Appl., 192 (1995), 892.  doi: 10.1006/jmaa.1995.1210.  Google Scholar

[10]

K.-J. Engel and R. Nagel, "One Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000).   Google Scholar

[11]

K.-J. Engel and R. Nagel, "A Short Course on One Parameter Semigroups,", Springer, (2005).   Google Scholar

[12]

P. Glendinning, "Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations,", Cambridge Texts in Applied Mathematics, (1994).   Google Scholar

[13]

T. Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[14]

P. Laurençot, The discrete coagulation equations with multiple fragmentation,, Proc. Edinburgh Math. Soc. (2), 45 (2002), 67.   Google Scholar

[15]

A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation,, Physica D, 239 (2010), 1436.  doi: 10.1016/j.physd.2009.03.013.  Google Scholar

[16]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations,, J. Math. Anal. Appl., 249 (2000), 668.  doi: 10.1006/jmaa.2000.6968.  Google Scholar

[17]

R. Rudnicki, On asymptotic stability and sweeping for Markov operators,, Bull. Pol. Ac. Sci. Math., 43 (1995), 245.   Google Scholar

[18]

A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss,, J. Evol. Equ., 12 (2012), 181.  doi: 10.1007/s00028-011-0129-8.  Google Scholar

show all references

References:
[1]

W. Arendt and A. Rhandi, Perturbation of positive semigroups,, Arch. Math. (Basel), 56 (1991), 107.  doi: 10.1007/BF01200341.  Google Scholar

[2]

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation,, J. Stat. Phys., 61 (1990), 203.  doi: 10.1007/BF01013961.  Google Scholar

[3]

J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications,", Springer Monographs in Mathematics, (2006).   Google Scholar

[4]

J. Banasiak, Positivity in natural sciences, in "Multiscale Problems in the Life Sciences,", Lecture Notes in Math., 1940 (2008), 1.   Google Scholar

[5]

J. Banasiak, On an irregular dynamics of certain fragmentation semigroups,, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 105 (2011), 361.  doi: 10.1007/s13398-011-0015-9.  Google Scholar

[6]

J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates,, Nonlinear Anal. Real World Appl., 13 (2012), 91.  doi: 10.1016/j.nonrwa.2011.07.016.  Google Scholar

[7]

J. Carr and F. P. da Costa, Asymptotic behaviour of solutions to the coagulation-fragmentation equations. II. Weak fragmentation,, J. Stat. Phys., 77 (1994), 89.  doi: 10.1007/BF02186834.  Google Scholar

[8]

Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter, "One-Parameter Semigroups,", CWI Monographs, 5 (1987).   Google Scholar

[9]

F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation,, J. Math. Anal. Appl., 192 (1995), 892.  doi: 10.1006/jmaa.1995.1210.  Google Scholar

[10]

K.-J. Engel and R. Nagel, "One Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000).   Google Scholar

[11]

K.-J. Engel and R. Nagel, "A Short Course on One Parameter Semigroups,", Springer, (2005).   Google Scholar

[12]

P. Glendinning, "Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations,", Cambridge Texts in Applied Mathematics, (1994).   Google Scholar

[13]

T. Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[14]

P. Laurençot, The discrete coagulation equations with multiple fragmentation,, Proc. Edinburgh Math. Soc. (2), 45 (2002), 67.   Google Scholar

[15]

A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation,, Physica D, 239 (2010), 1436.  doi: 10.1016/j.physd.2009.03.013.  Google Scholar

[16]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations,, J. Math. Anal. Appl., 249 (2000), 668.  doi: 10.1006/jmaa.2000.6968.  Google Scholar

[17]

R. Rudnicki, On asymptotic stability and sweeping for Markov operators,, Bull. Pol. Ac. Sci. Math., 43 (1995), 245.   Google Scholar

[18]

A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss,, J. Evol. Equ., 12 (2012), 181.  doi: 10.1007/s00028-011-0129-8.  Google Scholar

[1]

Horst R. Thieme. Positive perturbation of operator semigroups: growth bounds, essential compactness and asynchronous exponential growth. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 735-764. doi: 10.3934/dcds.1998.4.735

[2]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic & Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

[3]

Daniel Balagué, José A. Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinetic & Related Models, 2013, 6 (2) : 219-243. doi: 10.3934/krm.2013.6.219

[4]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[5]

Barry Simon. Zeros of OPUC and long time asymptotics of Schur and related flows. Inverse Problems & Imaging, 2007, 1 (1) : 189-215. doi: 10.3934/ipi.2007.1.189

[6]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[7]

Jin Zhang, Peter E. Kloeden, Meihua Yang, Chengkui Zhong. Global exponential κ-dissipative semigroups and exponential attraction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3487-3502. doi: 10.3934/dcds.2017148

[8]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[9]

Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 199-226. doi: 10.3934/dcds.2010.28.199

[10]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[11]

V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481

[12]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[13]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[14]

Jacek Banasiak, Luke O. Joel, Sergey Shindin. The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation. Kinetic & Related Models, 2019, 12 (5) : 1069-1092. doi: 10.3934/krm.2019040

[15]

Alain Bensoussan, Miroslav Bulíček, Jens Frehse. Existence and compactness for weak solutions to Bellman systems with critical growth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1729-1750. doi: 10.3934/dcdsb.2012.17.1729

[16]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[17]

Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017

[18]

A. Giambruno and M. Zaicev. Minimal varieties of algebras of exponential growth. Electronic Research Announcements, 2000, 6: 40-44.

[19]

Maria Rosaria Lancia, Valerio Regis Durante, Paola Vernole. Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1493-1520. doi: 10.3934/dcdss.2016060

[20]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]