• Previous Article
    The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth
  • KRM Home
  • This Issue
  • Next Article
    A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation
June  2012, 5(2): 237-260. doi: 10.3934/krm.2012.5.237

Boltzmann equation and hydrodynamics at the Burnett level

1. 

Department of Mathematics, Karlstad University, SE-651 88 Karlstad

Received  October 2011 Revised  November 2011 Published  April 2012

The hydrodynamics at the Burnett level is discussed in detail. First we explain the shortest way to derive the classical Burnett equations from the Boltzmann equation. Then we sketch all the computations needed for details of these equations. It is well known that the classical Burnett equations are ill-posed. We therefore explain how to make a regularization of these equations and derive the well-posed generalized Burnett equations (GBEs). We discuss briefly an optimal choice of free parameters in GBEs and consider a specific version of these equations. It is remarkable that this version of GBEs is even simpler than the original Burnett equations, it contains only third derivatives of density. Finally we prove a linear stability for GBEs. We also present some numerical results on the sound propagation based on GBEs and compare them with the Navier-Stokes results and experimental data.
Citation: Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237
References:
[1]

M. Bisi, M. P. Cassinari and M. Groppi, Qualitative analysis of the generalized Burnett equations and applications to half-space problems,, Kinet. Relat. Models, 1 (2008), 295. doi: 10.3934/krm.2008.1.295. Google Scholar

[2]

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,, Sov. Phys. Dokl., 27 (1982), 29. Google Scholar

[3]

A. V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations,, J. Stat. Phys., 124 (2006), 371. doi: 10.1007/s10955-005-8087-6. Google Scholar

[4]

A. V. Bobylev, Generalized Burnett hydrodynamics,, J. Stat. Phys., 132 (2008), 569. Google Scholar

[5]

A. V. Bobylev, M. Bisi, M. P. Cassinari and G. Spiga, Shock wave structure for generalized Burnett equations,, Phys. of Fluids, 23 (2011). Google Scholar

[6]

D. Burnett, The distribution of velocities in a slightly non-uniform gas,, Proc. London. Math. Soc., 39 (1935), 385. doi: 10.1112/plms/s2-39.1.385. Google Scholar

[7]

D. Burnett, The distribution of molecular velocities and the mean motion in a non-uniform gas,, Proc. London. Math. Soc., 40 (1935), 382. doi: 10.1112/plms/s2-40.1.382. Google Scholar

[8]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer-Verlag, (1988). Google Scholar

[9]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,", Cambrige University Press, (1990). Google Scholar

[10]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,", North-Holland, (1972). Google Scholar

[11]

S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation,, J. Stat. Phys., 103 (2001), 1009. doi: 10.1023/A:1010365123288. Google Scholar

[12]

M. N. Kogan, "Rarefied Gas Dynamics,", Plenum Press, (1969). Google Scholar

[13]

M. M. Postnikov, "Stable Polynomials,", Nauka, (1981). Google Scholar

[14]

M. Slemrod, A normalization method for the Chapman-Enskog expansion,, Physica D, 109 (1997), 257. doi: 10.1016/S0167-2789(97)00068-7. Google Scholar

[15]

M. Slemrod, Constitutive relations for monoatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion,, Arch. Rat. Mech. Anal, 150 (1999), 1. doi: 10.1007/s002050050178. Google Scholar

[16]

M. Slemrod, In the Chapman-Enskog expansion the Burnett coefficients satisfy the universal relation $\omega_3+\omega_4+\theta_3=0$,, Arch. Rat. Mech. Anal., 161 (2002), 339. doi: 10.1007/s002050100180. Google Scholar

[17]

M. Torrilon and H. Struchtrup, Regularized 13 moment equations: Shock structure calculations and comparison to Burnett models,, J. Fluid Mech., 513 (2004), 171. doi: 10.1017/S0022112004009917. Google Scholar

[18]

C. Truesdell and R. G. Muncaster, "Fundamental of Maxwell's Kinetic Theory of a Simple Monoatomic Gas,", Academic Press, (1980). Google Scholar

show all references

References:
[1]

M. Bisi, M. P. Cassinari and M. Groppi, Qualitative analysis of the generalized Burnett equations and applications to half-space problems,, Kinet. Relat. Models, 1 (2008), 295. doi: 10.3934/krm.2008.1.295. Google Scholar

[2]

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,, Sov. Phys. Dokl., 27 (1982), 29. Google Scholar

[3]

A. V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations,, J. Stat. Phys., 124 (2006), 371. doi: 10.1007/s10955-005-8087-6. Google Scholar

[4]

A. V. Bobylev, Generalized Burnett hydrodynamics,, J. Stat. Phys., 132 (2008), 569. Google Scholar

[5]

A. V. Bobylev, M. Bisi, M. P. Cassinari and G. Spiga, Shock wave structure for generalized Burnett equations,, Phys. of Fluids, 23 (2011). Google Scholar

[6]

D. Burnett, The distribution of velocities in a slightly non-uniform gas,, Proc. London. Math. Soc., 39 (1935), 385. doi: 10.1112/plms/s2-39.1.385. Google Scholar

[7]

D. Burnett, The distribution of molecular velocities and the mean motion in a non-uniform gas,, Proc. London. Math. Soc., 40 (1935), 382. doi: 10.1112/plms/s2-40.1.382. Google Scholar

[8]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer-Verlag, (1988). Google Scholar

[9]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,", Cambrige University Press, (1990). Google Scholar

[10]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,", North-Holland, (1972). Google Scholar

[11]

S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation,, J. Stat. Phys., 103 (2001), 1009. doi: 10.1023/A:1010365123288. Google Scholar

[12]

M. N. Kogan, "Rarefied Gas Dynamics,", Plenum Press, (1969). Google Scholar

[13]

M. M. Postnikov, "Stable Polynomials,", Nauka, (1981). Google Scholar

[14]

M. Slemrod, A normalization method for the Chapman-Enskog expansion,, Physica D, 109 (1997), 257. doi: 10.1016/S0167-2789(97)00068-7. Google Scholar

[15]

M. Slemrod, Constitutive relations for monoatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion,, Arch. Rat. Mech. Anal, 150 (1999), 1. doi: 10.1007/s002050050178. Google Scholar

[16]

M. Slemrod, In the Chapman-Enskog expansion the Burnett coefficients satisfy the universal relation $\omega_3+\omega_4+\theta_3=0$,, Arch. Rat. Mech. Anal., 161 (2002), 339. doi: 10.1007/s002050100180. Google Scholar

[17]

M. Torrilon and H. Struchtrup, Regularized 13 moment equations: Shock structure calculations and comparison to Burnett models,, J. Fluid Mech., 513 (2004), 171. doi: 10.1017/S0022112004009917. Google Scholar

[18]

C. Truesdell and R. G. Muncaster, "Fundamental of Maxwell's Kinetic Theory of a Simple Monoatomic Gas,", Academic Press, (1980). Google Scholar

[1]

Hiroshi Inoue. Magnetic hydrodynamics equations in movingboundaries. Conference Publications, 2005, 2005 (Special) : 397-402. doi: 10.3934/proc.2005.2005.397

[2]

Ivan C. Christov. On a C-integrable equation for second sound propagation in heated dielectrics. Evolution Equations & Control Theory, 2019, 8 (1) : 57-72. doi: 10.3934/eect.2019004

[3]

Marzia Bisi, Maria Paola Cassinari, Maria Groppi. Qualitative analysis of the generalized Burnett equations and applications to half--space problems. Kinetic & Related Models, 2008, 1 (2) : 295-312. doi: 10.3934/krm.2008.1.295

[4]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[5]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[6]

Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems & Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307

[7]

Yacine Chitour, Guilherme Mazanti, Mario Sigalotti. Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 563-601. doi: 10.3934/nhm.2016010

[8]

Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075

[9]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[10]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[11]

Youcef Mammeri. On the decay in time of solutions of some generalized regularized long waves equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 513-532. doi: 10.3934/cpaa.2008.7.513

[12]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[13]

Hua Chen, Wei-Xi Li, Chao-Jiang Xu. Propagation of Gevrey regularity for solutions of Landau equations. Kinetic & Related Models, 2008, 1 (3) : 355-368. doi: 10.3934/krm.2008.1.355

[14]

Chengxiang Wang, Li Zeng. Error bounds and stability in the $l_{0}$ regularized for CT reconstruction from small projections. Inverse Problems & Imaging, 2016, 10 (3) : 829-853. doi: 10.3934/ipi.2016023

[15]

Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1

[16]

Boris Kolev. Poisson brackets in Hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 555-574. doi: 10.3934/dcds.2007.19.555

[17]

Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001

[18]

Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167

[19]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[20]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]