• Previous Article
    A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation
  • KRM Home
  • This Issue
  • Next Article
    The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth
June  2012, 5(2): 237-260. doi: 10.3934/krm.2012.5.237

Boltzmann equation and hydrodynamics at the Burnett level

1. 

Department of Mathematics, Karlstad University, SE-651 88 Karlstad

Received  October 2011 Revised  November 2011 Published  April 2012

The hydrodynamics at the Burnett level is discussed in detail. First we explain the shortest way to derive the classical Burnett equations from the Boltzmann equation. Then we sketch all the computations needed for details of these equations. It is well known that the classical Burnett equations are ill-posed. We therefore explain how to make a regularization of these equations and derive the well-posed generalized Burnett equations (GBEs). We discuss briefly an optimal choice of free parameters in GBEs and consider a specific version of these equations. It is remarkable that this version of GBEs is even simpler than the original Burnett equations, it contains only third derivatives of density. Finally we prove a linear stability for GBEs. We also present some numerical results on the sound propagation based on GBEs and compare them with the Navier-Stokes results and experimental data.
Citation: Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237
References:
[1]

M. Bisi, M. P. Cassinari and M. Groppi, Qualitative analysis of the generalized Burnett equations and applications to half-space problems,, Kinet. Relat. Models, 1 (2008), 295.  doi: 10.3934/krm.2008.1.295.  Google Scholar

[2]

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,, Sov. Phys. Dokl., 27 (1982), 29.   Google Scholar

[3]

A. V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations,, J. Stat. Phys., 124 (2006), 371.  doi: 10.1007/s10955-005-8087-6.  Google Scholar

[4]

A. V. Bobylev, Generalized Burnett hydrodynamics,, J. Stat. Phys., 132 (2008), 569.   Google Scholar

[5]

A. V. Bobylev, M. Bisi, M. P. Cassinari and G. Spiga, Shock wave structure for generalized Burnett equations,, Phys. of Fluids, 23 (2011).   Google Scholar

[6]

D. Burnett, The distribution of velocities in a slightly non-uniform gas,, Proc. London. Math. Soc., 39 (1935), 385.  doi: 10.1112/plms/s2-39.1.385.  Google Scholar

[7]

D. Burnett, The distribution of molecular velocities and the mean motion in a non-uniform gas,, Proc. London. Math. Soc., 40 (1935), 382.  doi: 10.1112/plms/s2-40.1.382.  Google Scholar

[8]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer-Verlag, (1988).   Google Scholar

[9]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,", Cambrige University Press, (1990).   Google Scholar

[10]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,", North-Holland, (1972).   Google Scholar

[11]

S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation,, J. Stat. Phys., 103 (2001), 1009.  doi: 10.1023/A:1010365123288.  Google Scholar

[12]

M. N. Kogan, "Rarefied Gas Dynamics,", Plenum Press, (1969).   Google Scholar

[13]

M. M. Postnikov, "Stable Polynomials,", Nauka, (1981).   Google Scholar

[14]

M. Slemrod, A normalization method for the Chapman-Enskog expansion,, Physica D, 109 (1997), 257.  doi: 10.1016/S0167-2789(97)00068-7.  Google Scholar

[15]

M. Slemrod, Constitutive relations for monoatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion,, Arch. Rat. Mech. Anal, 150 (1999), 1.  doi: 10.1007/s002050050178.  Google Scholar

[16]

M. Slemrod, In the Chapman-Enskog expansion the Burnett coefficients satisfy the universal relation $\omega_3+\omega_4+\theta_3=0$,, Arch. Rat. Mech. Anal., 161 (2002), 339.  doi: 10.1007/s002050100180.  Google Scholar

[17]

M. Torrilon and H. Struchtrup, Regularized 13 moment equations: Shock structure calculations and comparison to Burnett models,, J. Fluid Mech., 513 (2004), 171.  doi: 10.1017/S0022112004009917.  Google Scholar

[18]

C. Truesdell and R. G. Muncaster, "Fundamental of Maxwell's Kinetic Theory of a Simple Monoatomic Gas,", Academic Press, (1980).   Google Scholar

show all references

References:
[1]

M. Bisi, M. P. Cassinari and M. Groppi, Qualitative analysis of the generalized Burnett equations and applications to half-space problems,, Kinet. Relat. Models, 1 (2008), 295.  doi: 10.3934/krm.2008.1.295.  Google Scholar

[2]

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,, Sov. Phys. Dokl., 27 (1982), 29.   Google Scholar

[3]

A. V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations,, J. Stat. Phys., 124 (2006), 371.  doi: 10.1007/s10955-005-8087-6.  Google Scholar

[4]

A. V. Bobylev, Generalized Burnett hydrodynamics,, J. Stat. Phys., 132 (2008), 569.   Google Scholar

[5]

A. V. Bobylev, M. Bisi, M. P. Cassinari and G. Spiga, Shock wave structure for generalized Burnett equations,, Phys. of Fluids, 23 (2011).   Google Scholar

[6]

D. Burnett, The distribution of velocities in a slightly non-uniform gas,, Proc. London. Math. Soc., 39 (1935), 385.  doi: 10.1112/plms/s2-39.1.385.  Google Scholar

[7]

D. Burnett, The distribution of molecular velocities and the mean motion in a non-uniform gas,, Proc. London. Math. Soc., 40 (1935), 382.  doi: 10.1112/plms/s2-40.1.382.  Google Scholar

[8]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer-Verlag, (1988).   Google Scholar

[9]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,", Cambrige University Press, (1990).   Google Scholar

[10]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,", North-Holland, (1972).   Google Scholar

[11]

S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation,, J. Stat. Phys., 103 (2001), 1009.  doi: 10.1023/A:1010365123288.  Google Scholar

[12]

M. N. Kogan, "Rarefied Gas Dynamics,", Plenum Press, (1969).   Google Scholar

[13]

M. M. Postnikov, "Stable Polynomials,", Nauka, (1981).   Google Scholar

[14]

M. Slemrod, A normalization method for the Chapman-Enskog expansion,, Physica D, 109 (1997), 257.  doi: 10.1016/S0167-2789(97)00068-7.  Google Scholar

[15]

M. Slemrod, Constitutive relations for monoatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion,, Arch. Rat. Mech. Anal, 150 (1999), 1.  doi: 10.1007/s002050050178.  Google Scholar

[16]

M. Slemrod, In the Chapman-Enskog expansion the Burnett coefficients satisfy the universal relation $\omega_3+\omega_4+\theta_3=0$,, Arch. Rat. Mech. Anal., 161 (2002), 339.  doi: 10.1007/s002050100180.  Google Scholar

[17]

M. Torrilon and H. Struchtrup, Regularized 13 moment equations: Shock structure calculations and comparison to Burnett models,, J. Fluid Mech., 513 (2004), 171.  doi: 10.1017/S0022112004009917.  Google Scholar

[18]

C. Truesdell and R. G. Muncaster, "Fundamental of Maxwell's Kinetic Theory of a Simple Monoatomic Gas,", Academic Press, (1980).   Google Scholar

[1]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[2]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[5]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[9]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[12]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[13]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[19]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[20]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]