Citation: |
[1] |
D. Amadori, L. Gosse and G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Rational Mech. Anal., 162 (2002), 327-366.doi: 10.1007/s002050200198. |
[2] |
K. Aoki and C. Cercignani, A technique for time-dependent boundary value problems in the kinetic theory of gases. I. Basic analysis, Z. Angew. Math. Phys., 35 (1984), 127-143.doi: 10.1007/BF00947927. |
[3] |
J. Appell, A. S. Kalitvin and P. P. Zabrejko, Boundary value problems for integro-differential equations of Barbashin type, J. Integral Equ. Applic., 6 (1994), 1-30.doi: 10.1216/jiea/1181075787. |
[4] |
A. Arnold, J. A. Carrillo and M. D. Tidriri, Large-time behavior of discrete equations with non-symmetric interactions, Math. Mod. Meth. in Appl. Sci., 12 (2002), 1555-1564. |
[5] |
C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., 63 (1991), 323-344.doi: 10.1007/BF01026608. |
[6] |
L. B. Barichello, M. Camargo, P. Rodrigues and C. E. Siewert, Unified solutions to classical flow problems based on the BGK model, Z. Angew. Math. Phys., 52 (2001), 517-534.doi: 10.1007/PL00001559. |
[7] |
L. B. Barichello and C. E. Siewert, A discrete-ordinates solution for a non-grey model with complete frequency redistribution, JQSRT, 62 (1999), 665-675 |
[8] |
G. R. Bart and R. L. Warnock, Linear integral equations of the third kind, SIAM J. Math. Anal., 4 (1973), 609-622.doi: 10.1137/0504053. |
[9] |
P. Bassanini, C. Cercignani and C. D. Pagani, Comparison of kinetic theory analyses of linearized heat transfer between parallel plates, Int. J. Heat Mass Transfer, 10 (1967), 447-460.doi: 10.1016/0017-9310(67)90165-2. |
[10] |
P. Bassanini, C. Cercignani and C. D. Pagani, Influence of the accommodation coefficient on the heat transfer in a rarefied gas, Int. J. Heat Mass Transfer, 11 (1968), 1359-1368.doi: 10.1016/0017-9310(68)90181-6. |
[11] |
R. Beals, An abstract treatment of some forward-backward problems of transport and scattering, J. Funct. Anal., 34 (1979), 1-20.doi: 10.1016/0022-1236(79)90021-1. |
[12] |
R. Beals and V. Protopopescu, Half-range completeness for the Fokker-Planck equation, J. Stat. Phys., 32 (1983), 565-584.doi: 10.1007/BF01008957. |
[13] |
M. Bennoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comp. Phys., 227 (2008), 3781-3803.doi: 10.1016/j.jcp.2007.11.032. |
[14] |
A. Biryuk, W. Craig and V. Panferov, Strong solutions of the Boltzmann equation in one spatial dimension, C. R. Acad. Sci. Paris, 342 (2006), 843-848.doi: 10.1016/j.crma.2006.04.005. |
[15] |
Kenneth M. Case, Elementary solutions of the transport equation and their applications, Ann. Physics, 9 (1960), 1-23.doi: 10.1016/0003-4916(60)90060-9. |
[16] |
K. M. Case and P. F. Zweifel, "Linear Transport Theory," Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967. |
[17] |
C. Cercignani, Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem, Ann. Physics, 20 (1962), 219-233.doi: 10.1016/0003-4916(62)90199-9. |
[18] |
C. Cercignani, Plane Couette flow according to the method of elementary solutions, J. Math. Anal. Applic., 11 (1965), 93-101.doi: 10.1016/0022-247X(65)90071-5. |
[19] |
C. Cercignani, Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics, J. Quant. Spectrosc. Radiat. Transfer, 11 (1971), 973-985.doi: 10.1016/0022-4073(71)90068-9. |
[20] |
C. Cercignani, Analytic solution of the temperature jump problem for the BGK model, TTSP, 6 (1977), 29-56. |
[21] |
C. Cercignani, Solution of a linearized kinetic model for an ultrarelativistic gas, J. Stat. Phys., 42 (1986), 601-620.doi: 10.1007/BF01127731. |
[22] |
C. Cercignani, "Mathematical Methods in Kinetic Theory," Plenum Press, New York, 1969. |
[23] |
C. Cercignani, "Slow Rarefied Flows. Theory and Application to Micro-Electro-Mechanical Systems," Progress in Mathematical Physics, 41, Birkhäuser Verlag, Basel, 2006. |
[24] |
C. Cercignani and F. Sernagiotto, The method of elementary solutions for time-dependent problems in linearized kinetic theory, Ann. Physics, 30 (1964), 154-167.doi: 10.1016/0003-4916(64)90308-2. |
[25] |
Ch. Dalitz, Half-space problem of the Boltzmann equation for charged particles, J. Stat. Phys., 88 (1997), 129-144.doi: 10.1007/BF02508467. |
[26] |
E. de Groot and Ch. Dalitz, Exact solution for a boundary value problem in semiconductor kinetic theory, J. Math. Phys., 38 (1997), 4629-4643.doi: 10.1063/1.532111. |
[27] |
L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and BGK equations, Arch. Rat. Mech. Anal., 110 (1990), 73-91.doi: 10.1007/BF00375163. |
[28] |
L. Desvillettes and F. Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math., 133 (2009), 848-858.doi: 10.1016/j.bulsci.2008.09.001. |
[29] |
A. Frangi, A. Frezzotti and S. Lorenzani, On the application of the BGK kinetic model to the analysis of gas-structure interaction in MEMS, Computers and Structures, 85 (2007), 810-817.doi: 10.1016/j.compstruc.2007.01.011. |
[30] |
F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comp. Phys., 229 (2010), 7625-7648.doi: 10.1016/j.jcp.2010.06.017. |
[31] |
L. Gosse, Transient radiative transfer in the grey case: Well-balanced and asymptotic-preserving schemes built on Case's elementary solutions, Journal of Quantitative Spectroscopy & Radiative Transfer, 112 (2011), 1995-2012.doi: 10.1016/j.jqsrt.2011.04.003. |
[32] |
L. Gosse and G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Math. Acad. Sci. Paris, 334 (2002), 337-342.doi: 10.1016/S1631-073X(02)02257-4. |
[33] |
L. Gosse and G. Toscani, Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes, SIAM J. Numer. Anal., 41 (2003), 641-658.doi: 10.1137/S0036142901399392. |
[34] |
J. Greenberg and A. Y. Leroux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16.doi: 10.1137/0733001. |
[35] |
W. Greenberg, C. V. M. van der Meea and P. F. Zweifel, Generalized kinetic equations, Integr. Equa. Oper. Theory, 7 (1984), 60-95.doi: 10.1007/BF01204914. |
[36] |
N. Hadjiconstantinou and A. Garcia, Molecular simulations of sound wave propagation in simple gases, Physics of Fluids, 13 (2001), 1040-1046.doi: 10.1063/1.1352630. |
[37] |
E. Isaacson and B. Temple, Convergence of the $2 \times 2$ Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55 (1995), 625-640doi: 10.1137/S0036139992240711. |
[38] |
Shi Jin and David Levermore, The discrete-ordinate method in diffusive regimes, Transp. Theor. Stat. Phys., 20 (1991), 413-439.doi: 10.1080/00411459108203913. |
[39] |
A. Kadir Aziz, D. A. French, S. Jensen and R. B. Kellogg, Origins, analysis, numerical analysis, and numerical approximation of a forward-backward parabolic problem, M2AN Math. Model. Numer. Anal., 33 (1999), 895-922.doi: 10.1051/m2an:1999125. |
[40] |
H. Kaper, A constructive approach to the solution of a class of boundary value problems of mixed type, J. Math. Anal. Applic., 63 (1978), 691-718.doi: 10.1016/0022-247X(78)90066-5. |
[41] |
H. Kaper, Boundary value problems of mixed type arising in the kinetic theory of gases, SIAM J. Math. Anal., 10 (1979), 161-178.doi: 10.1137/0510017. |
[42] |
H. Kaper, Spectral representation of an unbounded linear transformation arising in the kinetic theory of gases, SIAM J. Math. Anal., 10 (1979), 179-191.doi: 10.1137/0510018. |
[43] |
Tomaž Klinc, On completeness of eigenfunctions of the one-speed transport equation, Commun. Math. Phys., 41 (1975), 273-279.doi: 10.1007/BF01608991. |
[44] |
G. M. Kremer, "An Introduction to the Boltzmann Equation and Transport Processes in Gases," Interaction of Mechanics and Mathematics, Springer, 2010. |
[45] |
J. T. Kriese, T. S. Chang and C. E. Siewert, Elementary solutions of coupled model equations in the kinetic theory of gases, Int. J. Eng. Sci., 12 (1974), 441-470.doi: 10.1016/0020-7225(74)90064-0. |
[46] |
A. V. Latyshev, The use of Case's method to solve the linearized BGK equations for the temperature-jump problem, J. Appl. Math. Mech., 54 (1990), 480-484.doi: 10.1016/0021-8928(90)90059-J. |
[47] |
A. V. Latyshev and A. A. Yushkanov, An analytic solution of the problem of temperature and density jumps of a vapor over a surface in the presence of a temperature gradient, J. Applied Math. Mech., 58 (1994), 259-265.doi: 10.1016/0021-8928(94)90054-X. |
[48] |
Ph. LeFloch and A. E. Tzavaras, Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal., 30 (1999), 1309-1342.doi: 10.1137/S0036141098341794. |
[49] |
T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation, Physica D, 188 (2004), 178-192.doi: 10.1016/j.physd.2003.07.011. |
[50] |
T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decomposition and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.doi: 10.1007/s00220-003-1030-2. |
[51] |
Taki Ohwada, Boltzmann schemes for the compressible Navier-Stokes equations, in "Rarefied Gas Dynamics: 22nd Internat. Symp.," (eds. T. J. Bartel and M. A. Gallis), (2001), 321-328. |
[52] |
L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations, Transp. Theo. Stat. Phys., 25 (1996), 369-382.doi: 10.1080/00411459608220707. |
[53] |
L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator, SIAM J. Numer. Anal., 37 (2000), 1217-1245.doi: 10.1137/S0036142998343300. |
[54] |
L. Pareschi and G. Russo, An introduction to the numerical analysis of the Boltzmann equation, Riv. Mat. Univ. Parma (7), 4 (2005), 145-250. |
[55] |
B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 205-244. |
[56] |
L. Saint-Raymond, From the BGK model to the Navier-Stokes equations, Ann. Scient. Éc. Norm. Sup. (4), 36 (2003), 271-317. |
[57] |
C. S. Scherer, J. F. Prolo Filho and L. B. Barichello, An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. I. Flow problems, ZAMP, 60 (2009), 70-115.doi: 10.1007/s00033-008-7084-4. |
[58] |
C. S. Scherer, J. F. Prolo Filho and L. B. Barichello, An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. II. Heat transfer problems, ZAMP, 60 (2009), 651-687.doi: 10.1007/s00033-008-7113-3. |
[59] |
C. E. Siewert, Half-space analysis basic to the linearized Boltzmann equation, ZAMP, 28 (1977), 531-535.doi: 10.1007/BF01601632. |
[60] |
C. E. Siewert, A discrete-ordinates solution for heat transfer in a plane channel, J. Comp. Phys., 152 (1999), 251-263.doi: 10.1006/jcph.1999.6244. |
[61] |
C. E. Siewert and E. E. Burniston, Half-space analysis basic to the time-dependent BGK model in the kinetic theory of gases, J. Math. Phys., 18 (1977), 376-380.doi: 10.1063/1.523279. |
[62] |
C. E. Siewert, E. E. Burniston and J. R. Thomas, Jr., Discrete spectrum basic to kinetic theory, Phys. Fluids, 16 (1971), 1532-1533.doi: 10.1063/1.1694556. |
[63] |
C. E. Siewert and J. T. Kriese, Half-space orthogonality relations basic to the solution of time-dependent boundary value problems in the kinetic theory of gases, ZAMP, 29 (1978), 199-205.doi: 10.1007/BF01601514. |
[64] |
C. E. Siewert and S. J. Wright, Efficient eigenvalue calculations in radiative transfer, J. Quant. Spectro. Radiat. Transf., (1999), 685-688. |
[65] |
J. R. Thomas and C. E. Siewert, Sound wave propagation in a rarefied gas, Transp. Theory Stat. Phys., 8 (1979), 219-240.doi: 10.1080/00411457908214538. |
[66] |
A. E. Tzavaras, On the mathematical theory of fluid dynamic limits to conservation laws, in "Advances in Mathematical Fluid Mechanics, (eds. J. Malek, J. Nečas and M. Rokyta) (Paseky, 1999), Springer, Berlin, (2000), 192-222. |
[67] |
C. van der Mee, "Exponentially Dichotomous Operators and Applications, Operator Theory: Advances and Applications," 182, Linear Operators and Linear Systems, Birkhäuser Verlag, Basel, 2008. |
[68] |
C. van der Mee and C. E. Siewert, On unbounded eigenvalues in transport theory, ZAMP, 34 (1983), 556-561.doi: 10.1007/BF00944716. |
[69] |
C. Villani, A review of mathematical topics in collisional kinetic theory, in "Handbook of Mathematical Fluid Dynamics," Vol. 1, North-Holland, Amsterdam, (2002), 71-305.doi: 10.1016/S1874-5792(02)80004-0. |
[70] |
M. M. R. Williams, A review of the rarefied gas dynamics theory associated with some classical problems in flow and heat Transfer, Z. Angew. Math. Phys., 52 (2001), 500-516.doi: 10.1007/PL00001558. |