\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Lifschitz-Slyozov equation with space-diffusion of monomers

Abstract Related Papers Cited by
  • The Lifschitz--Slyozov system describes the dynamics of mass exchanges between macro--particles and monomers in the theory of coarsening. We consider a variant of the classical model where monomers are subject to space diffusion. We establish the existence--uniqueness of solutions for a wide class of relevant data and kinetic coefficients. We also derive a numerical scheme to simulate the behavior of the solutions.
    Mathematics Subject Classification: Primary: 82C21; Secondary: 35G61, 45K05, 82C26.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Brézis, "Analyse Fonctionnelle. Théorie et Applications," Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

    [2]

    J. A. Carrillo and T. Goudon, A numerical study on large-time asymptotics of the Lifschitz-Slyozov system, J. Scient. Comp., 18 (2003), 429-473.

    [3]

    L. Châun-Hoàn, "Étude de la Classe des Opérateurs $m-$Accrétifs de $L^1(\Omega)$ et Accrétifs dans $L^\infty(\Omega)$," Thèse de 3ème cycle, Université Paris VI, 1977.

    [4]

    M. K. Chen and P. W. Voorhees, The dynamics of transient Ostwald ripening, Modelling Simul. Mater. Sci. Eng., 1 (1993), 591-612.doi: 10.1088/0965-0393/1/5/002.

    [5]

    E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.

    [6]

    J.-F. Collet and T. Goudon, Lifschitz-Slyozov equations: The model with encounters, Transp. Theory Stat. Phys., 28 (1999), 545-573.doi: 10.1080/00411459908214517.

    [7]

    J.-F. Collet and T. Goudon, On solutions of the Lifschitz-Slyozov model, Nonlinearity, 13 (2000), 1239-1262.doi: 10.1088/0951-7715/13/4/314.

    [8]

    J.-F. Collet, T. Goudon, F. Poupaud and A. Vasseur, The Becker-Döring system and its Lifschitz-Slyozov limit, SIAM J. Appl. Math., 62 (2002), 1488-1500.doi: 10.1137/S0036139900378852.

    [9]

    J.-F. Collet, T. Goudon and A. Vasseur, Some remarks on the large-time asymptotic of the Lifschitz-Slyozov equations, J. Stat. Phys., 108 (2002), 341-359.doi: 10.1023/A:1015404021853.

    [10]

    J. Conlon, On a diffusive version of the Lifschitz-Slyozov-Wagner equation, J. Nonlinear Sc., 20 (2010), 463-521.doi: 10.1007/s00332-010-9065-y.

    [11]

    D. B. Dadyburjor and E. Ruckenstein, Kinetics of Ostwald ripening, J. Crystal Growth, 40 (1977), 279-290.doi: 10.1016/0022-0248(77)90017-3.

    [12]

    C. Dellacherie and P.-A. Meyer, "Probabilités et Potentiel," chapitres I à IV, Édition entièrement refondue, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, No. 1372, Hermann, Paris, 1975.

    [13]

    R. Edwards, "Functional Analysis: Theory and Applications," Corrected reprint of the 1965 original, Dover Publications, Inc., New York, 1995.

    [14]

    T. Goudon, "Intégration: Intégrale de Lebesgue et Introduction à l'Analyse Fonctionnelle," Ellipses, 2011.

    [15]

    S. Hariz and J.-F. Collet, A modified version of the Lifschitz-Slyozov model, Applied Math. Lett., 12 (1999), 81-85.doi: 10.1016/S0893-9659(98)00138-4.

    [16]

    M. Herrmann, B. Niethammer and J. J. L. Velázquez, Self-similar solutions for the LSW model with with encounters, J. Differential Equations, 247 (2009), 2282-2309.

    [17]

    P. Laurençot, Weak solutions to the Lifschitz-Slyozov-Wagner equation, Indiana Univ. Math. J., 50 (2001), 1319-1346.

    [18]

    P. Laurençot, The Lifschitz-Slyozov equation with encounters, Math. Models Methods Appl. Sci., 11 (2001), 731-748.doi: 10.1142/S0218202501001070.

    [19]

    P. Laurençot, The Lifschitz-Slyozov-Wagner equation with conserved total volume, SIAM J. Math. Anal., 34 (2002), 257-272.doi: 10.1137/S0036141001387471.

    [20]

    I. M. Lifschitz and L. Pitaevski, "Cinétique Physique," Cours de Physique Théorique, Vol. 10, L. Landau-I. Lifschitz, Mir, 1990.

    [21]

    I. M. Lifschitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50.doi: 10.1016/0022-3697(61)90054-3.

    [22]

    B. Niethammer, A scaling limit of the Becker-Döring equations in the regime of small excess density, J. Nonlinear Sci., 14 (2004), 453-468.doi: 10.1007/s00332-004-0638-5.

    [23]

    B. Niethammer and F. Otto, Ostwald ripening: The screening length revisited, Calc. Var. Partial Differential Equations, 13 (2001), 33-68.

    [24]

    B. Niethammer and R. Pego, Non-self-similar behavior in the LSW theory of Ostwald ripening, J. Stat. Phys., 95 (1999), 867-902.doi: 10.1023/A:1004546215920.

    [25]

    B. Niethammer and R. Pego, On the initial-value problem in the Lifschitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485.doi: 10.1137/S0036141098338211.

    [26]

    B. Niethammer and R. Pego, The LSW model for domain coarsening: Asymptotic behavior for conserved total mass, J. Stat. Phys., 104 (2001), 1113-1144.doi: 10.1023/A:1010405812125.

    [27]

    B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana Univ. Math. J., 54 (2005), 499-530.doi: 10.1512/iumj.2005.54.2598.

    [28]

    B. Niethammer and J. J. L. Velázquez, Global well-posedness for an inhomogeneous LSW-model in unbounded domains, Math. Ann., 328 (2004), 481-501.doi: 10.1007/s00208-003-0503-0.

    [29]

    B. Niethammer and J. J. L. Velázquez, On screening induced fluctuations in Ostwald ripening, J. Stat. Phys., 130 (2008), 415-453.doi: 10.1007/s10955-007-9449-z.

    [30]

    O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening, J. Stat. Phys., 89 (1997), 305-320.doi: 10.1007/BF02770767.

    [31]

    T. PhillipsTrouble with Lifshitz, Slyozov and Wagner, Science News, NASA Science, 2003. Available from: http://www.nasa.gov/vision/earth/technologies/coarsening_prt.htm.

    [32]

    V. V. Sagalovich and V. V. Slyozov, Diffusive decomposition of solid solutions, Sov. Phys. Usp., 30 (1987), 23-44.doi: 10.1070/PU1987v030n01ABEH002792.

    [33]

    J. Simon, Compact sets in $L^p(0,T;B)$, Ann. Mat., Pura ed Appl. (4), 146 (1987), 65-96.

    [34]

    L. M. Tiné, T. Goudon and F. Lagoutière, Simulations of the Lifschitz-Slyozov equations with coagulations terms: Finite volumes schemes and anti-diffusive strategies, preprint, 2011.

    [35]

    F. Trèves, "Topological Vector Spaces, Distributions and Kernels," Unabridged republication of the 1967 original, Dover Publications, Inc., Mineola, NY, 2006.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return