June  2012, 5(2): 357-382. doi: 10.3934/krm.2012.5.357

Periodic long-time behaviour for an approximate model of nematic polymers

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084

2. 

CERMICS, École des Ponts ParisTech, 6 & 8, avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France, France

Received  July 2011 Revised  January 2012 Published  April 2012

We study the long-time behaviour of a nonlinear Fokker-Planck equation, which models the evolution of rigid polymers in a given flow, after a closure approximation. The aim of this work is twofold: first, we propose a microscopic derivation of the classical Doi closure, at the level of the kinetic equation ; second, under specific assumptions on the parameters and the initial condition, we prove convergence of the solution to the Fokker-Planck equation to a particular periodic solution in the long-time limit.
Citation: Lingbing He, Claude Le Bris, Tony Lelièvre. Periodic long-time behaviour for an approximate model of nematic polymers. Kinetic & Related Models, 2012, 5 (2) : 357-382. doi: 10.3934/krm.2012.5.357
References:
[1]

C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, "Sur les Inégalités de Sobolev Logarithmiques," Panoramas et Synthèses, 10, Société Mathématique de France, 2000.  Google Scholar

[2]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Part. Diff. Eq., 26 (2001), 43-100.  Google Scholar

[3]

J.-P. Bartier, J. Dolbeault, R. Illner and M. Kowalczyk, A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients, Math. Models and Methods in Applied Sciences, 17 (2007), 327-362. doi: 10.1142/S0218202507001942.  Google Scholar

[4]

G. Ciccotti, T. Lelièvre and E. Vanden-Eijnden, Projection of diffusions on submanifolds: Application to mean force computation, Commun. Pur. Appl. Math., 61 (2008), 371-408. doi: 10.1002/cpa.20210.  Google Scholar

[5]

P. Constantin, I. Kevrekidis and E. S. Titi, Asymptotic states of a Smoluchowski equation, Archive Rational Mech. Analysis, 174 (2004), 365-384. doi: 10.1007/s00205-004-0331-8.  Google Scholar

[6]

P. Constantin, I. Kevrekidis and E. S. Titi, Remarks on a Smoluchowski equation, Disc. and Cont. Dyn. Syst., 11 (2004), 101-112. doi: 10.3934/dcds.2004.11.101.  Google Scholar

[7]

M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci., Polym. Phys. Ed., 19 (1981), 229-243. doi: 10.1002/pol.1981.180190205.  Google Scholar

[8]

J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, The flashing ratchet: Long time behavior and dynamical systems interpretation, Technical Report 0244, CEREMADE, 2002. Available from: http://www.ceremade.dauphine.fr/preprints/CMD/2002-44.pdf. Google Scholar

[9]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," Fifth edition, The Clarendon Press, Oxford University Press, New York, 1979.  Google Scholar

[10]

M. Hitsuda and I. Mitoma, Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions, J. Multivariate Anal., 19 (1986), 311-328. doi: 10.1016/0047-259X(86)90035-7.  Google Scholar

[11]

B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows, Archive for Rational Mechanics and Analysis, 181 (2006), 97-148. doi: 10.1007/s00205-005-0411-4.  Google Scholar

[12]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Second edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998.  Google Scholar

[13]

C. Le Bris, T. Lelièvre and E. Vanden-Eijnden, Analysis of some discretization schemes for constrained stochastic differential equations, C. R. Math. Acad. Sci. Paris, 346 (2008), 471-476. doi: 10.1016/j.crma.2008.02.016.  Google Scholar

[14]

J. H. Lee, M. G. Forest and R. Zhou, Alignment and Rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 339-356.  Google Scholar

[15]

J. D. Meiss, "Differential Dynamical Systems," Mathematical Modeling and Computation, 14, SIAM, Philadelphia, PA, 2007.  Google Scholar

[16]

I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers," Fifth edition, John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[17]

A.-S. Sznitman, Topics in propagation of chaos, in "École d'Été de Probabilités de Saint-Flour XIX-1989," Lecture Notes in Math., 1464, Springer, Berlin, (1991), 165-251.  Google Scholar

[18]

H. Zhang and P.-W. Zhang, A theoretical and numerical study for the rod-like model of a polymeric fluid, Journal of Computational Mathematics, 22 (2004), 319-330.  Google Scholar

show all references

References:
[1]

C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, "Sur les Inégalités de Sobolev Logarithmiques," Panoramas et Synthèses, 10, Société Mathématique de France, 2000.  Google Scholar

[2]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Part. Diff. Eq., 26 (2001), 43-100.  Google Scholar

[3]

J.-P. Bartier, J. Dolbeault, R. Illner and M. Kowalczyk, A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients, Math. Models and Methods in Applied Sciences, 17 (2007), 327-362. doi: 10.1142/S0218202507001942.  Google Scholar

[4]

G. Ciccotti, T. Lelièvre and E. Vanden-Eijnden, Projection of diffusions on submanifolds: Application to mean force computation, Commun. Pur. Appl. Math., 61 (2008), 371-408. doi: 10.1002/cpa.20210.  Google Scholar

[5]

P. Constantin, I. Kevrekidis and E. S. Titi, Asymptotic states of a Smoluchowski equation, Archive Rational Mech. Analysis, 174 (2004), 365-384. doi: 10.1007/s00205-004-0331-8.  Google Scholar

[6]

P. Constantin, I. Kevrekidis and E. S. Titi, Remarks on a Smoluchowski equation, Disc. and Cont. Dyn. Syst., 11 (2004), 101-112. doi: 10.3934/dcds.2004.11.101.  Google Scholar

[7]

M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci., Polym. Phys. Ed., 19 (1981), 229-243. doi: 10.1002/pol.1981.180190205.  Google Scholar

[8]

J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, The flashing ratchet: Long time behavior and dynamical systems interpretation, Technical Report 0244, CEREMADE, 2002. Available from: http://www.ceremade.dauphine.fr/preprints/CMD/2002-44.pdf. Google Scholar

[9]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," Fifth edition, The Clarendon Press, Oxford University Press, New York, 1979.  Google Scholar

[10]

M. Hitsuda and I. Mitoma, Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions, J. Multivariate Anal., 19 (1986), 311-328. doi: 10.1016/0047-259X(86)90035-7.  Google Scholar

[11]

B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows, Archive for Rational Mechanics and Analysis, 181 (2006), 97-148. doi: 10.1007/s00205-005-0411-4.  Google Scholar

[12]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Second edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998.  Google Scholar

[13]

C. Le Bris, T. Lelièvre and E. Vanden-Eijnden, Analysis of some discretization schemes for constrained stochastic differential equations, C. R. Math. Acad. Sci. Paris, 346 (2008), 471-476. doi: 10.1016/j.crma.2008.02.016.  Google Scholar

[14]

J. H. Lee, M. G. Forest and R. Zhou, Alignment and Rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 339-356.  Google Scholar

[15]

J. D. Meiss, "Differential Dynamical Systems," Mathematical Modeling and Computation, 14, SIAM, Philadelphia, PA, 2007.  Google Scholar

[16]

I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers," Fifth edition, John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[17]

A.-S. Sznitman, Topics in propagation of chaos, in "École d'Été de Probabilités de Saint-Flour XIX-1989," Lecture Notes in Math., 1464, Springer, Berlin, (1991), 165-251.  Google Scholar

[18]

H. Zhang and P.-W. Zhang, A theoretical and numerical study for the rod-like model of a polymeric fluid, Journal of Computational Mathematics, 22 (2004), 319-330.  Google Scholar

[1]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[2]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[3]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[4]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[5]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[6]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[7]

Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360

[8]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[9]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

[10]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[11]

Yang Liu, Xin Zhong. On the Cauchy problem of 3D nonhomogeneous incompressible nematic liquid crystal flows with vacuum. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5219-5238. doi: 10.3934/cpaa.2020234

[12]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[13]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[14]

Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations & Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007

[15]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[16]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[17]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[18]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic & Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[19]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

[20]

Martin Frank, Cory D. Hauck, Edgar Olbrant. Perturbed, entropy-based closure for radiative transfer. Kinetic & Related Models, 2013, 6 (3) : 557-587. doi: 10.3934/krm.2013.6.557

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]