\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$

Abstract Related Papers Cited by
  • For the relativistic Boltzmann equation in $\mathbb{R}^3_x$, this work proves the global existence, uniqueness, positivity, and optimal time convergence rates to the relativistic Maxwellian for solutions which start out sufficiently close under the general physical soft potential assumption proposed in 1988 [13].
    Mathematics Subject Classification: Primary: 76P05; Secondary: 83A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Håkan Andréasson, Regularity of the gain term and strong $L^1$ convergence to equilibrium for the relativistic Boltzmann equation, SIAM J. Math. Anal., 27 (1996), 1386-1405.doi: 10.1137/0527076.

    [2]

    Russel E. Caflisch, The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Comm. Math. Phys., 74 (1980), 71-95.

    [3]

    Russel E. Caflisch, The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic, Comm. Math. Phys., 74 (1980), 97-109.

    [4]

    Simone Calogero, The Newtonian limit of the relativistic Boltzmann equation, J. Math. Phys., 45 (2004), 4042-4052.doi: 10.1063/1.1793328.

    [5]

    Carlo Cercignani and Gilberto Medeiros Kremer, "The Relativistic Boltzmann Equation: Theory and Applications," Progress in Mathematical Physics, 22, Birkhäuser Verlag, Basel, 2002.

    [6]

    S. R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, "Relativistic Kinetic Theory. Principles and Applications," North-Holland Publishing Co., Amsterdam-New York, 1980.

    [7]

    L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316.doi: 10.1007/s00222-004-0389-9.

    [8]

    R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. (2), 130 (1989), 321-366.doi: 10.2307/1971423.

    [9]

    Renjun Duan and Robert M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.doi: 10.1007/s00205-010-0318-6.

    [10]

    Renjun Duan and Robert M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Commun. Pure Appl. Math., 64 (2011), 1497-1546.

    [11]

    Marek Dudyński, On the linearized relativistic Boltzmann equation. II. Existence of hydrodynamics, J. Statist. Phys., 57 (1989), 199-245.doi: 10.1007/BF01023641.

    [12]

    Marek Dudyński and Maria L. Ekiel-Jeżewska, The relativistic Boltzmann equation-mathematical and physical aspects, J. Tech. Phys., 48 (2007), 39-47.

    [13]

    Marek Dudyński and Maria L. Ekiel-Jeżewska, On the linearized relativistic Boltzmann equation. I. Existence of solutions, Comm. Math. Phys., 115 (1988), 607-629.doi: 10.1007/BF01224130.

    [14]

    Marek Dudyński and Maria L. Ekiel-Jeżewska, Global existence proof for relativistic Boltzmann equation, J. Statist. Phys., 66 (1992), 991-1001.doi: 10.1007/BF01055712.

    [15]

    Marek Dudyński and Maria L. Ekiel-Jeżewska, Causality of the linearized relativistic Boltzmann equation, Phys. Rev. Lett., 55 (1985), 2831-2834.doi: 10.1103/PhysRevLett.55.2831.

    [16]

    Marek Dudyński and Maria L. Ekiel-Jeżewska, Errata: "Causality of the linearized relativistic Boltzmann equation,'' Investigación Oper., 6 (1985), 2228.

    [17]

    Seung-Yeal Ha, Yong Duck Kim, Ho Lee and Se Eun Noh, Asymptotic completeness for relativistic kinetic equations with short-range interaction forces, Methods Appl. Anal., 14 (2007), 251-262.

    [18]

    Seung-Yeal Ha, Ho Lee, Xiongfeng Yang and Seok-Bae Yun, Uniform $L^2$-stability estimates for the relativistic Boltzmann equation, J. Hyperbolic Differ. Equ., 6 (2009), 295-312.

    [19]

    Ling Hsiao and Hongjun Yu, Asymptotic stability of the relativistic Maxwellian, Math. Methods Appl. Sci., 29 (2006), 1481-1499.doi: 10.1002/mma.736.

    [20]

    Ling Hsiao and Hongjun Yu, Global classical solutions to the initial value problem for the relativistic Landau equation, J. Differential Equations, 228 (2006), 641-660.

    [21]

    Robert T. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

    [22]

    Robert T. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data, Comm. Math. Phys., 264 (2006), 705-724.doi: 10.1007/s00220-006-1522-y.

    [23]

    Robert T. Glassey and Walter A. Strauss, On the derivatives of the collision map of relativistic particles, Transport Theory Statist. Phys., 20 (1991), 55-68.doi: 10.1080/00411459108204708.

    [24]

    Robert T. Glassey and Walter A. Strauss, Asymptotic stability of the relativistic Maxwellian, Publ. Res. Inst. Math. Sci., 29 (1993), 301-347.doi: 10.2977/prims/1195167275.

    [25]

    Robert T. Glassey and Walter A. Strauss, Asymptotic stability of the relativistic Maxwellian via fourteen moments, Transport Theory Statist. Phys., 24 (1995), 657-678.doi: 10.1080/00411459508206020.

    [26]

    Philip T. Gressman and Robert M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions, Proc. Nat. Acad. Sci. USA, 107 (2010), 5744-5749.doi: 10.1073/pnas.1001185107.

    [27]

    Philip T. Gressman and Robert M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847.doi: 10.1090/S0894-0347-2011-00697-8.

    [28]

    Philip T. Gressman and Robert M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., 227 (2011), 2349-2384.doi: 10.1016/j.aim.2011.05.005.

    [29]

    Yan Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630.doi: 10.1007/s00222-003-0301-z.

    [30]

    Yan Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal., 169 (2003), 305-353.doi: 10.1007/s00205-003-0262-9.

    [31]

    Yan Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197 (2010), 713-809.doi: 10.1007/s00205-009-0285-y.

    [32]

    Yan Guo and Robert M. Strain, Momentum regularity and stability of the relativistic Vlasov-Maxwell-Boltzmann system, Comm. Math. Phys., 310 (2012), 649-673.doi: 10.1007/s00220-012-1417-z.

    [33]

    Yan Guo and Walter A. Strauss, Instability of periodic BGK equilibria, Comm. Pure Appl. Math., 48 (1995), 861-894.doi: 10.1002/cpa.3160480803.

    [34]

    Zhenglu Jiang, On the Cauchy problem for the relativistic Boltzmann equation in a periodic box: Global existence, Transport Theory Statist. Phys., 28 (1999), 617-628.doi: 10.1080/00411459908214520.

    [35]

    Zhenglu Jiang, On the relativistic Boltzmann equation, Acta Math. Sci. (English Ed.), 18 (1998), 348-360.

    [36]

    Shuichi Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.doi: 10.1007/BF03167846.

    [37]

    P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ., 34 (1994), 391-427, 429-461, 539-584.

    [38]

    Tai-Ping Liu and Shih-Hsien Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Comm. Pure Appl. Math., 60 (2007), 295-356.doi: 10.1002/cpa.20172.

    [39]

    Tai-Ping Liu and Shih-Hsien Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math., 57 (2004), 1543-1608.doi: 10.1002/cpa.20011.

    [40]

    Clément Mouhot and Cédric Villani, On Landau damping, Acta Math., 207 (2012), 29-201.

    [41]

    Jared Speck and Robert M. Strain, Hilbert expansion from the Boltzmann equation to relativistic fluids, Comm. Math. Phys., 304 (2011), 229-280.doi: 10.1007/s00220-011-1207-z.

    [42]

    Robert M. Strain and Yan Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320.doi: 10.1007/s00220-004-1151-2.

    [43]

    Robert M. Strain and Yan Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006), 417-429.

    [44]

    Robert M. Strain and Yan Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.doi: 10.1007/s00205-007-0067-3.

    [45]

    Robert M. Strain, Global Newtonian limit for the relativistic Boltzmann equation near vacuum, SIAM J. Math. Anal., 42 (2010), 1568-1601.doi: 10.1137/090762695.

    [46]

    Robert M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft-potentials, Comm. Math. Phys., 300 (2010), 529-597.doi: 10.1007/s00220-010-1129-1.

    [47]

    Robert M. Strain, Coordinates in the relativistic Boltzmann theory, Kinetic and Related Models, 4 (2011), 345-359.doi: 10.3934/krm.2011.4.345.

    [48]

    Robert M. Strain, Optimal time decay of the non cut-off Boltzmann equation in the whole space, preprint, arXiv:1011.5561v2, 2010.

    [49]

    Seiji Ukai and Kiyoshi Asano, On the Cauchy problem of the Boltzmann equation with a soft potential, Publ. Res. Inst. Math. Sci., 18 (1982), 57-99.doi: 10.2977/prims/1195183569.

    [50]

    Ivan Vidav, Spectra of perturbed semigroups with applications to transport theory, J. Math. Anal. Appl., 30 (1970), 264-279.doi: 10.1016/0022-247X(70)90160-5.

    [51]

    Bernt Wennberg, The geometry of binary collisions and generalized Radon transforms, Arch. Rational Mech. Anal., 139 (1997), 291-302.doi: 10.1007/s002050050054.

    [52]

    Tong Yang and Hongjun Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560.

    [53]

    Hongjun Yu, Smoothing effects for classical solutions of the relativistic Landau-Maxwell system, J. Differential Equations, 246 (2009), 3776-3817.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return