Citation: |
[1] |
R. Alexandre and M. El Safadi, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations, I. Non-cutoff case and Maxwellian molecules, Math. Models Methods Appl. Sci., 15 (2005), 907-920.doi: 10.1142/S0218202505000613. |
[2] |
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interations, Arch. Ration. Mech. Anal., 152 (2000), 327-355.doi: 10.1007/s002050000083. |
[3] |
A. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules, Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044. |
[4] |
J. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma (7), 6 (2007), 75-198. |
[5] |
L. Desvillettes, About the use of the Fourier transform for the Boltzmann equation, Summer School on Methods and Models in Kinetic Theory, Riv. Mat. Univ. Parma (7), 2 (2003), 1-99. |
[6] |
L. Desvillettes and M. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Rational Mech. Anal., 193 (2009), 227-253.doi: 10.1007/s00205-009-0233-x. |
[7] |
N. Fournier and G. Héléne, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity, J. Stat. Phys., 131 (2008), 749-781.doi: 10.1007/s10955-008-9511-5. |
[8] |
T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grasing collisions, J. Stat. Phys., 89 (1997), 752-776.doi: 10.1007/BF02765543. |
[9] |
A. Pulvirenti and G. Toscani, The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation, Ann. Mat. Pura Appl. (IV), 171 (1996), 181-204.doi: 10.1007/BF01759387. |
[10] |
G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Stat. Phys., 94 (1999), 619-637.doi: 10.1023/A:1004589506756. |
[11] |
C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 71-305. |
[12] |
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.doi: 10.1007/s002050050106. |