\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem

Abstract Related Papers Cited by
  • We present a Fourier transform formula of quadratic-form type for the collision operator with a Maxwellian kernel under the momentum transfer condition. As an application, we extend the work of Toscani and Villani on the uniform stability of the Cauchy problem for the associated Boltzmann equation to any physically relevant Maxwellian molecules in the long-range interactions with a minimal requirement for the initial data.
    Mathematics Subject Classification: 35Q82, 47G20, 76P05, 82B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Alexandre and M. El Safadi, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations, I. Non-cutoff case and Maxwellian molecules, Math. Models Methods Appl. Sci., 15 (2005), 907-920.doi: 10.1142/S0218202505000613.

    [2]

    R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interations, Arch. Ration. Mech. Anal., 152 (2000), 327-355.doi: 10.1007/s002050000083.

    [3]

    A. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules, Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044.

    [4]

    J. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma (7), 6 (2007), 75-198.

    [5]

    L. Desvillettes, About the use of the Fourier transform for the Boltzmann equation, Summer School on Methods and Models in Kinetic Theory, Riv. Mat. Univ. Parma (7), 2 (2003), 1-99.

    [6]

    L. Desvillettes and M. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Rational Mech. Anal., 193 (2009), 227-253.doi: 10.1007/s00205-009-0233-x.

    [7]

    N. Fournier and G. Héléne, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity, J. Stat. Phys., 131 (2008), 749-781.doi: 10.1007/s10955-008-9511-5.

    [8]

    T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grasing collisions, J. Stat. Phys., 89 (1997), 752-776.doi: 10.1007/BF02765543.

    [9]

    A. Pulvirenti and G. Toscani, The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation, Ann. Mat. Pura Appl. (IV), 171 (1996), 181-204.doi: 10.1007/BF01759387.

    [10]

    G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Stat. Phys., 94 (1999), 619-637.doi: 10.1023/A:1004589506756.

    [11]

    C. VillaniA review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 71-305.

    [12]

    C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.doi: 10.1007/s002050050106.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return