September  2012, 5(3): 459-484. doi: 10.3934/krm.2012.5.459

Hard sphere dynamics and the Enskog equation

1. 

Institute of Mathematics of NAS of Ukraine, 3, Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine

2. 

Taras Shevchenko National University of Kyiv, Department of Mechanics and Mathematics, 2, Academician Glushkov Av.03187, Kyiv, Ukraine

Received  August 2011 Revised  January 2012 Published  August 2012

We develop a rigorous formalism for the description of the kinetic evolution of infinitely many hard spheres. On the basis of the kinetic cluster expansions of cumulants of groups of operators of finitely many hard spheres which are the generating operators of a nonperturbative solution of the Cauchy problem of the BBGKY hierarchy the nonlinear kinetic Enskog equation is derived. It is established that for initial states which are specified in terms of one-particle distribution functions the description of the evolution by the Cauchy problem of the BBGKY hierarchy and by the Cauchy problem of the generalized Enskog kinetic equation together with a sequence of explicitly defined functionals of a solution of stated kinetic equation are an equivalent. For the initial-value problem of the generalized Enskog equation the existence theorem is proved in the space of integrable functions.
Citation: Viktor I. Gerasimenko, Igor V. Gapyak. Hard sphere dynamics and the Enskog equation. Kinetic & Related Models, 2012, 5 (3) : 459-484. doi: 10.3934/krm.2012.5.459
References:
[1]

C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, "Many-Particle Dynamics and Kinetic Equations,", Kluwer Acad. Publ., (1997).  doi: 10.1007/978-94-011-5558-8.  Google Scholar

[2]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Springer-Verlag, (1994).   Google Scholar

[3]

H. Spohn, "Large Scale Dynamics of Interacting Particles,", Springer-Verlag, (1991).  doi: 10.1007/978-3-642-84371-6.  Google Scholar

[4]

D. Ya. Petrina, "Stochastic Dynamics and Boltzmann Hierarchy,", Institute of Mathematics, (2008).   Google Scholar

[5]

O. E. Lanford, Time evolution of large classical systems,, in, 38 (1975), 1.   Google Scholar

[6]

H. Grad, Principles of the kinetic theory of gases,, in, 12 (1958), 205.   Google Scholar

[7]

H. Spohn, Kinetic equations from Hamiltonian dynamics,, Reviews of Modern Physics, 52 (1980), 569.  doi: 10.1103/RevModPhys.52.569.  Google Scholar

[8]

D. Enskog, Kinetiche theorie der wärmeleitung, reibung und selbstdiffusion in gewissen werdichteten Gasen und flüβigkeiten,, Kungl. Sv. Vetenskapsakademiens Handl., 63 (1922), 3.   Google Scholar

[9]

N. Bellomo, M. Lachowicz, J. Polewczak and G. Toscani, "Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation,", World Sci. Publ., (1991).   Google Scholar

[10]

J. Polewczak, On some open problems in the revised Enskog equation for dense gases,, in, (2001), 382.   Google Scholar

[11]

J. Polewczak, A review of the kinetic modelings for non-reactive and reactive dense fluids: Questions and problems,, Rivista di Matematica della Universita' di Parma, 4 (2001), 23.   Google Scholar

[12]

M. Pulvirenti, On the Enskog hierarchy: analyticity, uniqueness, and derivability by particle systems,, Rediconti del Circolo Matematico di Palermo, 45 (1996), 529.   Google Scholar

[13]

N. Bellomo and M. Lachowicz, Kinetic equations for dense gases: A review of mathematical and physical results,, J. Modern Phys. B, 1 (1987), 1193.  doi: 10.1142/S0217979287001687.  Google Scholar

[14]

V. I. Gerasimenko and D. Ya. Petrina, Thermodynamical limit of nonequilibrium states of three dimensional hard spheres system,, Theor. Math. Phys., 64 (1985), 130.  doi: 10.1007/BF01017041.  Google Scholar

[15]

H. van Beijeren and M. H. Ernst, The modified Enskog equation,, Physica, 68 (1973), 437.  doi: 10.1016/0031-8914(73)90372-8.  Google Scholar

[16]

P. Re'sibois and M. De Leener, "Classical Kinetic Theory of Fluids,", John Wiley and Sons, (1977).   Google Scholar

[17]

N. N. Bogolybov, "Problems of a Dynamical Theory in Statistical Physics,", M.: Gostekhizdat, (1946).   Google Scholar

[18]

V. I. Gerasimenko, T. V. Ryabukha and M. O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions,, J. Phys. A: Math. Gen., 37 (2004), 9861.  doi: 10.1088/0305-4470/37/42/002.  Google Scholar

[19]

J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications,", Springer, (2006).   Google Scholar

[20]

V. I. Gerasimenko, On the solutions of the BBGKY hierarchy for a one-dimensional hard-sphere system,, Theor. Math. Phys., 91 (1992), 120.  doi: 10.1007/BF01019833.  Google Scholar

[21]

V. I. Gerasimenko and Zh. A. Tsvir, A description of the evolution of quantum states by means of the kinetic equation,, J. Phys. A: Math. Theor., 43 (2010).   Google Scholar

[22]

V. I. Gerasimenko, Approaches to derivation of quantum kinetic equations,, Ukrainian J. Phys., 54 (2009), 834.   Google Scholar

[23]

V. I. Gerasimenko and D. Ya. Petrina, On the generalized kinetic equation,, Reports of NAS of Ukraine, 7 (1997), 7.   Google Scholar

[24]

V. I. Gerasimenko and D. Ya. Petrina, The generalized kinetic equation generated by the BBGKY hierarchy,, Ukrainian J. Phys., 43 (1998), 697.   Google Scholar

[25]

G. Borgioli, V. I. Gerasimenko and G. Lauro, Derivation of a discrete Enskog equation from the dynamics of particles,, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 59.   Google Scholar

[26]

G. E. Uhlenbeck and G. W. Ford, "Lecture in Statistical Mechanics,", American Mathematical Society Providence, (1963).   Google Scholar

[27]

M. S. Green and R. A. Piccirelli, Basis of the functional assumption in the theory of the Boltzmann equation,, Phys. Rev., 132 (1963), 1388.  doi: 10.1103/PhysRev.132.1388.  Google Scholar

[28]

M. S. Green, Boltzmann equation from the statistical mechanical point of view,, J. Chem. Phys., 25 (1956), 836.  doi: 10.1063/1.1743132.  Google Scholar

[29]

E. G. D. Cohen, Cluster expansions and the hierarchy. I. Nonequilibrium distribution functions,, Physica, 28 (1962), 1045.  doi: 10.1016/0031-8914(62)90009-5.  Google Scholar

show all references

References:
[1]

C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, "Many-Particle Dynamics and Kinetic Equations,", Kluwer Acad. Publ., (1997).  doi: 10.1007/978-94-011-5558-8.  Google Scholar

[2]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Springer-Verlag, (1994).   Google Scholar

[3]

H. Spohn, "Large Scale Dynamics of Interacting Particles,", Springer-Verlag, (1991).  doi: 10.1007/978-3-642-84371-6.  Google Scholar

[4]

D. Ya. Petrina, "Stochastic Dynamics and Boltzmann Hierarchy,", Institute of Mathematics, (2008).   Google Scholar

[5]

O. E. Lanford, Time evolution of large classical systems,, in, 38 (1975), 1.   Google Scholar

[6]

H. Grad, Principles of the kinetic theory of gases,, in, 12 (1958), 205.   Google Scholar

[7]

H. Spohn, Kinetic equations from Hamiltonian dynamics,, Reviews of Modern Physics, 52 (1980), 569.  doi: 10.1103/RevModPhys.52.569.  Google Scholar

[8]

D. Enskog, Kinetiche theorie der wärmeleitung, reibung und selbstdiffusion in gewissen werdichteten Gasen und flüβigkeiten,, Kungl. Sv. Vetenskapsakademiens Handl., 63 (1922), 3.   Google Scholar

[9]

N. Bellomo, M. Lachowicz, J. Polewczak and G. Toscani, "Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation,", World Sci. Publ., (1991).   Google Scholar

[10]

J. Polewczak, On some open problems in the revised Enskog equation for dense gases,, in, (2001), 382.   Google Scholar

[11]

J. Polewczak, A review of the kinetic modelings for non-reactive and reactive dense fluids: Questions and problems,, Rivista di Matematica della Universita' di Parma, 4 (2001), 23.   Google Scholar

[12]

M. Pulvirenti, On the Enskog hierarchy: analyticity, uniqueness, and derivability by particle systems,, Rediconti del Circolo Matematico di Palermo, 45 (1996), 529.   Google Scholar

[13]

N. Bellomo and M. Lachowicz, Kinetic equations for dense gases: A review of mathematical and physical results,, J. Modern Phys. B, 1 (1987), 1193.  doi: 10.1142/S0217979287001687.  Google Scholar

[14]

V. I. Gerasimenko and D. Ya. Petrina, Thermodynamical limit of nonequilibrium states of three dimensional hard spheres system,, Theor. Math. Phys., 64 (1985), 130.  doi: 10.1007/BF01017041.  Google Scholar

[15]

H. van Beijeren and M. H. Ernst, The modified Enskog equation,, Physica, 68 (1973), 437.  doi: 10.1016/0031-8914(73)90372-8.  Google Scholar

[16]

P. Re'sibois and M. De Leener, "Classical Kinetic Theory of Fluids,", John Wiley and Sons, (1977).   Google Scholar

[17]

N. N. Bogolybov, "Problems of a Dynamical Theory in Statistical Physics,", M.: Gostekhizdat, (1946).   Google Scholar

[18]

V. I. Gerasimenko, T. V. Ryabukha and M. O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions,, J. Phys. A: Math. Gen., 37 (2004), 9861.  doi: 10.1088/0305-4470/37/42/002.  Google Scholar

[19]

J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications,", Springer, (2006).   Google Scholar

[20]

V. I. Gerasimenko, On the solutions of the BBGKY hierarchy for a one-dimensional hard-sphere system,, Theor. Math. Phys., 91 (1992), 120.  doi: 10.1007/BF01019833.  Google Scholar

[21]

V. I. Gerasimenko and Zh. A. Tsvir, A description of the evolution of quantum states by means of the kinetic equation,, J. Phys. A: Math. Theor., 43 (2010).   Google Scholar

[22]

V. I. Gerasimenko, Approaches to derivation of quantum kinetic equations,, Ukrainian J. Phys., 54 (2009), 834.   Google Scholar

[23]

V. I. Gerasimenko and D. Ya. Petrina, On the generalized kinetic equation,, Reports of NAS of Ukraine, 7 (1997), 7.   Google Scholar

[24]

V. I. Gerasimenko and D. Ya. Petrina, The generalized kinetic equation generated by the BBGKY hierarchy,, Ukrainian J. Phys., 43 (1998), 697.   Google Scholar

[25]

G. Borgioli, V. I. Gerasimenko and G. Lauro, Derivation of a discrete Enskog equation from the dynamics of particles,, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 59.   Google Scholar

[26]

G. E. Uhlenbeck and G. W. Ford, "Lecture in Statistical Mechanics,", American Mathematical Society Providence, (1963).   Google Scholar

[27]

M. S. Green and R. A. Piccirelli, Basis of the functional assumption in the theory of the Boltzmann equation,, Phys. Rev., 132 (1963), 1388.  doi: 10.1103/PhysRev.132.1388.  Google Scholar

[28]

M. S. Green, Boltzmann equation from the statistical mechanical point of view,, J. Chem. Phys., 25 (1956), 836.  doi: 10.1063/1.1743132.  Google Scholar

[29]

E. G. D. Cohen, Cluster expansions and the hierarchy. I. Nonequilibrium distribution functions,, Physica, 28 (1962), 1045.  doi: 10.1016/0031-8914(62)90009-5.  Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[7]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[8]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[9]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[10]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]