September  2012, 5(3): 459-484. doi: 10.3934/krm.2012.5.459

Hard sphere dynamics and the Enskog equation

1. 

Institute of Mathematics of NAS of Ukraine, 3, Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine

2. 

Taras Shevchenko National University of Kyiv, Department of Mechanics and Mathematics, 2, Academician Glushkov Av.03187, Kyiv, Ukraine

Received  August 2011 Revised  January 2012 Published  August 2012

We develop a rigorous formalism for the description of the kinetic evolution of infinitely many hard spheres. On the basis of the kinetic cluster expansions of cumulants of groups of operators of finitely many hard spheres which are the generating operators of a nonperturbative solution of the Cauchy problem of the BBGKY hierarchy the nonlinear kinetic Enskog equation is derived. It is established that for initial states which are specified in terms of one-particle distribution functions the description of the evolution by the Cauchy problem of the BBGKY hierarchy and by the Cauchy problem of the generalized Enskog kinetic equation together with a sequence of explicitly defined functionals of a solution of stated kinetic equation are an equivalent. For the initial-value problem of the generalized Enskog equation the existence theorem is proved in the space of integrable functions.
Citation: Viktor I. Gerasimenko, Igor V. Gapyak. Hard sphere dynamics and the Enskog equation. Kinetic and Related Models, 2012, 5 (3) : 459-484. doi: 10.3934/krm.2012.5.459
References:
[1]

C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, "Many-Particle Dynamics and Kinetic Equations," Kluwer Acad. Publ., 1997. doi: 10.1007/978-94-011-5558-8.

[2]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Springer-Verlag, 1994.

[3]

H. Spohn, "Large Scale Dynamics of Interacting Particles," Springer-Verlag, 1991. doi: 10.1007/978-3-642-84371-6.

[4]

D. Ya. Petrina, "Stochastic Dynamics and Boltzmann Hierarchy," Institute of Mathematics, Kyiv, 2008.

[5]

O. E. Lanford, Time evolution of large classical systems, in "Dynamical Systems, Theory and Application" (ed. J. Moser), Lecture Notes in Physics, 38, Springer, (1975), 1-111.

[6]

H. Grad, Principles of the kinetic theory of gases, in "Handbuch der Physik," 12, Springer, (1958), 205-294.

[7]

H. Spohn, Kinetic equations from Hamiltonian dynamics, Reviews of Modern Physics, 52 (1980), 569-615. doi: 10.1103/RevModPhys.52.569.

[8]

D. Enskog, Kinetiche theorie der wärmeleitung, reibung und selbstdiffusion in gewissen werdichteten Gasen und flüβigkeiten, Kungl. Sv. Vetenskapsakademiens Handl., 63 (1922), 3-44.

[9]

N. Bellomo, M. Lachowicz, J. Polewczak and G. Toscani, "Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation," World Sci. Publ., 1991.

[10]

J. Polewczak, On some open problems in the revised Enskog equation for dense gases, in "Proc. ASCOM 99" (Eds. V. Ciancio, A. Donato, F. Oliveri and S. Rionero), World Sci. Publ., (2001), 382-396.

[11]

J. Polewczak, A review of the kinetic modelings for non-reactive and reactive dense fluids: Questions and problems, Rivista di Matematica della Universita' di Parma, 4 (2001), 23-55.

[12]

M. Pulvirenti, On the Enskog hierarchy: analyticity, uniqueness, and derivability by particle systems, Rediconti del Circolo Matematico di Palermo, Serie II, Suppl., 45 (1996), 529-542.

[13]

N. Bellomo and M. Lachowicz, Kinetic equations for dense gases: A review of mathematical and physical results, J. Modern Phys. B, 1 (1987), 1193-1206. doi: 10.1142/S0217979287001687.

[14]

V. I. Gerasimenko and D. Ya. Petrina, Thermodynamical limit of nonequilibrium states of three dimensional hard spheres system, Theor. Math. Phys., 64 (1985), 130-149. doi: 10.1007/BF01017041.

[15]

H. van Beijeren and M. H. Ernst, The modified Enskog equation, Physica, 68 (1973), 437-456. doi: 10.1016/0031-8914(73)90372-8.

[16]

P. Re'sibois and M. De Leener, "Classical Kinetic Theory of Fluids," John Wiley and Sons, New York, 1977.

[17]

N. N. Bogolybov, "Problems of a Dynamical Theory in Statistical Physics," M.: Gostekhizdat, 1946.

[18]

V. I. Gerasimenko, T. V. Ryabukha and M. O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions, J. Phys. A: Math. Gen., 37 (2004), 9861-9872. doi: 10.1088/0305-4470/37/42/002.

[19]

J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer, 2006.

[20]

V. I. Gerasimenko, On the solutions of the BBGKY hierarchy for a one-dimensional hard-sphere system, Theor. Math. Phys., 91 (1992), 120-132. doi: 10.1007/BF01019833.

[21]

V. I. Gerasimenko and Zh. A. Tsvir, A description of the evolution of quantum states by means of the kinetic equation, J. Phys. A: Math. Theor., 43 (2010), 485203, 19 pp.

[22]

V. I. Gerasimenko, Approaches to derivation of quantum kinetic equations, Ukrainian J. Phys., 54 (2009), 834-846.

[23]

V. I. Gerasimenko and D. Ya. Petrina, On the generalized kinetic equation, Reports of NAS of Ukraine, 7 (1997), 7-12.

[24]

V. I. Gerasimenko and D. Ya. Petrina, The generalized kinetic equation generated by the BBGKY hierarchy, Ukrainian J. Phys., 43 (1998), 697-702.

[25]

G. Borgioli, V. I. Gerasimenko and G. Lauro, Derivation of a discrete Enskog equation from the dynamics of particles, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 59-69.

[26]

G. E. Uhlenbeck and G. W. Ford, "Lecture in Statistical Mechanics," American Mathematical Society Providence, Rhode Island, 1963.

[27]

M. S. Green and R. A. Piccirelli, Basis of the functional assumption in the theory of the Boltzmann equation, Phys. Rev., 132 (1963), 1388-1410. doi: 10.1103/PhysRev.132.1388.

[28]

M. S. Green, Boltzmann equation from the statistical mechanical point of view, J. Chem. Phys., 25 (1956), 836-855. doi: 10.1063/1.1743132.

[29]

E. G. D. Cohen, Cluster expansions and the hierarchy. I. Nonequilibrium distribution functions, Physica, 28 (1962), 1045-1065. doi: 10.1016/0031-8914(62)90009-5.

show all references

References:
[1]

C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, "Many-Particle Dynamics and Kinetic Equations," Kluwer Acad. Publ., 1997. doi: 10.1007/978-94-011-5558-8.

[2]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Springer-Verlag, 1994.

[3]

H. Spohn, "Large Scale Dynamics of Interacting Particles," Springer-Verlag, 1991. doi: 10.1007/978-3-642-84371-6.

[4]

D. Ya. Petrina, "Stochastic Dynamics and Boltzmann Hierarchy," Institute of Mathematics, Kyiv, 2008.

[5]

O. E. Lanford, Time evolution of large classical systems, in "Dynamical Systems, Theory and Application" (ed. J. Moser), Lecture Notes in Physics, 38, Springer, (1975), 1-111.

[6]

H. Grad, Principles of the kinetic theory of gases, in "Handbuch der Physik," 12, Springer, (1958), 205-294.

[7]

H. Spohn, Kinetic equations from Hamiltonian dynamics, Reviews of Modern Physics, 52 (1980), 569-615. doi: 10.1103/RevModPhys.52.569.

[8]

D. Enskog, Kinetiche theorie der wärmeleitung, reibung und selbstdiffusion in gewissen werdichteten Gasen und flüβigkeiten, Kungl. Sv. Vetenskapsakademiens Handl., 63 (1922), 3-44.

[9]

N. Bellomo, M. Lachowicz, J. Polewczak and G. Toscani, "Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation," World Sci. Publ., 1991.

[10]

J. Polewczak, On some open problems in the revised Enskog equation for dense gases, in "Proc. ASCOM 99" (Eds. V. Ciancio, A. Donato, F. Oliveri and S. Rionero), World Sci. Publ., (2001), 382-396.

[11]

J. Polewczak, A review of the kinetic modelings for non-reactive and reactive dense fluids: Questions and problems, Rivista di Matematica della Universita' di Parma, 4 (2001), 23-55.

[12]

M. Pulvirenti, On the Enskog hierarchy: analyticity, uniqueness, and derivability by particle systems, Rediconti del Circolo Matematico di Palermo, Serie II, Suppl., 45 (1996), 529-542.

[13]

N. Bellomo and M. Lachowicz, Kinetic equations for dense gases: A review of mathematical and physical results, J. Modern Phys. B, 1 (1987), 1193-1206. doi: 10.1142/S0217979287001687.

[14]

V. I. Gerasimenko and D. Ya. Petrina, Thermodynamical limit of nonequilibrium states of three dimensional hard spheres system, Theor. Math. Phys., 64 (1985), 130-149. doi: 10.1007/BF01017041.

[15]

H. van Beijeren and M. H. Ernst, The modified Enskog equation, Physica, 68 (1973), 437-456. doi: 10.1016/0031-8914(73)90372-8.

[16]

P. Re'sibois and M. De Leener, "Classical Kinetic Theory of Fluids," John Wiley and Sons, New York, 1977.

[17]

N. N. Bogolybov, "Problems of a Dynamical Theory in Statistical Physics," M.: Gostekhizdat, 1946.

[18]

V. I. Gerasimenko, T. V. Ryabukha and M. O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions, J. Phys. A: Math. Gen., 37 (2004), 9861-9872. doi: 10.1088/0305-4470/37/42/002.

[19]

J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer, 2006.

[20]

V. I. Gerasimenko, On the solutions of the BBGKY hierarchy for a one-dimensional hard-sphere system, Theor. Math. Phys., 91 (1992), 120-132. doi: 10.1007/BF01019833.

[21]

V. I. Gerasimenko and Zh. A. Tsvir, A description of the evolution of quantum states by means of the kinetic equation, J. Phys. A: Math. Theor., 43 (2010), 485203, 19 pp.

[22]

V. I. Gerasimenko, Approaches to derivation of quantum kinetic equations, Ukrainian J. Phys., 54 (2009), 834-846.

[23]

V. I. Gerasimenko and D. Ya. Petrina, On the generalized kinetic equation, Reports of NAS of Ukraine, 7 (1997), 7-12.

[24]

V. I. Gerasimenko and D. Ya. Petrina, The generalized kinetic equation generated by the BBGKY hierarchy, Ukrainian J. Phys., 43 (1998), 697-702.

[25]

G. Borgioli, V. I. Gerasimenko and G. Lauro, Derivation of a discrete Enskog equation from the dynamics of particles, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 59-69.

[26]

G. E. Uhlenbeck and G. W. Ford, "Lecture in Statistical Mechanics," American Mathematical Society Providence, Rhode Island, 1963.

[27]

M. S. Green and R. A. Piccirelli, Basis of the functional assumption in the theory of the Boltzmann equation, Phys. Rev., 132 (1963), 1388-1410. doi: 10.1103/PhysRev.132.1388.

[28]

M. S. Green, Boltzmann equation from the statistical mechanical point of view, J. Chem. Phys., 25 (1956), 836-855. doi: 10.1063/1.1743132.

[29]

E. G. D. Cohen, Cluster expansions and the hierarchy. I. Nonequilibrium distribution functions, Physica, 28 (1962), 1045-1065. doi: 10.1016/0031-8914(62)90009-5.

[1]

Anton Trushechkin. Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic and Related Models, 2014, 7 (4) : 755-778. doi: 10.3934/krm.2014.7.755

[2]

A. V. Bobylev, E. Mossberg. On some properties of linear and linearized Boltzmann collision operators for hard spheres. Kinetic and Related Models, 2008, 1 (4) : 521-555. doi: 10.3934/krm.2008.1.521

[3]

Mario Pulvirenti, Sergio Simonella. On the cardinality of collisional clusters for hard spheres at low density. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3903-3914. doi: 10.3934/dcds.2021021

[4]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[5]

Gerhard Keller, Carlangelo Liverani. Coupled map lattices without cluster expansion. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 325-335. doi: 10.3934/dcds.2004.11.325

[6]

Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic and Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79

[7]

Vincent Giovangigli, Wen-An Yong. Erratum: ``Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion''. Kinetic and Related Models, 2016, 9 (4) : 813-813. doi: 10.3934/krm.2016018

[8]

Jacek Polewczak, Ana Jacinta Soares. On modified simple reacting spheres kinetic model for chemically reactive gases. Kinetic and Related Models, 2017, 10 (2) : 513-539. doi: 10.3934/krm.2017020

[9]

Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems and Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307

[10]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic and Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

[11]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[12]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic and Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[13]

Oktay Veliev. Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 397-424. doi: 10.3934/cpaa.2019020

[14]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic and Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[15]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems and Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[16]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic and Related Models, 2021, 14 (3) : 541-570. doi: 10.3934/krm.2021015

[17]

Peigen Cao, Fang Li, Siyang Liu, Jie Pan. A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27: 1-6. doi: 10.3934/era.2019006

[18]

Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory. Networks and Heterogeneous Media, 2018, 13 (2) : 191-215. doi: 10.3934/nhm.2018009

[19]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[20]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (180)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]