September  2012, 5(3): 485-503. doi: 10.3934/krm.2012.5.485

Optimization of a model Fokker-Planck equation

1. 

RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany, Germany, Germany

Received  October 2011 Revised  March 2012 Published  August 2012

We discuss optimal control problems for the Fokker--Planck equation arising in radiotherapy treatment planning. We prove existence and uniqueness of an optimal boundary control for a general tracking--type cost functional in three spatial dimensions. Under additional regularity assumptions we prove existence of a continuous necessary first--order optimality system. In the one--dimensional case we analyse a numerical discretization of the Fokker--Planck equation. We prove that the resulting discrete optimality system is a suitable discretization of the continuous first--order system.
Citation: Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485
References:
[1]

R. Barnard, M. Frank and M. Herty, Optimal radiotherapy treatment planning using minimum entropy models,, preprint, (2011).   Google Scholar

[2]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling),, Math. Mod. Math. Appl. Sci., 15 (2005).   Google Scholar

[3]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling II),, Math. Mod. Math. Appl. Sci., 16 (2006).   Google Scholar

[4]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling),, Math. Mod. Math. Appl. Sci., 17 (2007).   Google Scholar

[5]

K. K. Bucci, A. Bevan and M. Roach III, Advances in radiation therapy: Conventional to 3d, to IMRT, to 4d, and beyond},, CA Cancer J. Clin., 55 (2005), 117.   Google Scholar

[6]

C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods,, Phys. Med. Biol., 43 (1998), 517.  doi: 10.1088/0031-9155/43/3/004.  Google Scholar

[7]

C. Börgers, The radiation therapy planning problem,, in, 110 (1999), 1.   Google Scholar

[8]

T. Brunner, "Forms of Approximate Radiation Transport,", Sandia Report, (2002).   Google Scholar

[9]

R. G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy,, Br. J. Radiol., 58 (1985), 515.  doi: 10.1259/0007-1285-58-690-515.  Google Scholar

[10]

P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation,, Transport Theory and Statistical Physics, 16 (1987), 589.  doi: 10.1080/00411458708204307.  Google Scholar

[11]

B. Dubroca and J.-L. Feugeas, Étude théorique et numérique d'une hiérarchie de modèles aux moments pout le transfert radiatif,, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 915.   Google Scholar

[12]

R. Duclous, B. Dubroca and M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy,, Physics in Medicine and Biology, 55 (2010).  doi: 10.1088/0031-9155/55/13/018.  Google Scholar

[13]

M. Frank, Approximate Models for Radiative Transfer,, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 2 (2007), 409.   Google Scholar

[14]

M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer,, Journal of Computational Physics, 218 (2006), 1.  doi: 10.1016/j.jcp.2006.01.038.  Google Scholar

[15]

M. Frank, M. Herty and A. N. Sandjo, Optimal radiotherapy treatment plannig governed by kinetic equations,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 661.  doi: 10.1142/S0218202510004386.  Google Scholar

[16]

M. Frank, M. Herty and M. Schäfer, Optimal treatment plannig in radiotherapy based on Boltzmann transport calculation,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 573.  doi: 10.1142/S0218202508002784.  Google Scholar

[17]

K. A. Gifford, J. L. Horton Jr., T. A. Wareing, G. Failla and F. Mourtada, Comparioson of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations,, Phys. Med. Biol., 51 (2006), 2253.   Google Scholar

[18]

H. Hensel, R. Iza-Teran and Norbert Siedow, Deterministic model for dose calculation in photon radiotherapy,, Physics in Medicine and Biology, 51 (2006), 675.  doi: 10.1088/0031-9155/51/3/013.  Google Scholar

[19]

M. Herty and A. N. Sandjo, On Optimal treatment plannig in radiotherapy governed by transport equations,, Mathematical Models and Methods in Applied Sciences, 21 (2011), 345.  doi: 10.1142/S0218202511005076.  Google Scholar

[20]

M. Herty, R. Pinnau and M. Seaid, Optimal control in radiative transfer,, Optimization Methods and Software, 22 (2007), 917.   Google Scholar

[21]

E. W. Larsen, M. M. Miften, B. A. Fraass and I. A. D. Bruinvis, Electron dose calculations using the method of moments,, Med. Phys., 24 (1997), 111.  doi: 10.1118/1.597920.  Google Scholar

[22]

E. W. Larsen, Tutorial: The nature of transport calculations used in radiation oncology,, Transp. Theory Stat. Phys., 26 (1997).   Google Scholar

[23]

J. L. Lions, "Équations Differentielles Operationnelles et Problèmes aux Limites,", Die Grundlehren der mathematischen Wissenschaften, (1961).   Google Scholar

[24]

D. Jackson, "Fourier Series and Orthogonal Functions,", Carus Mathematical Monograph Series, (1941).   Google Scholar

[25]

K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, F. Alonso, A. S. A. Sultan, T. Bortfeld and C. Thieke, Multicriteria optimizaton in intensity modulated radiotherapy planning,, in, 26 (2009), 123.   Google Scholar

[26]

J. C. Mark, "The Spherical Harmonics Method. I. (General Development of the Theory),", Document no. CRT-340 (N.R.C. 1588), (1588).   Google Scholar

[27]

J. C. Mark, "The Spherical Harmonics Method. II. (Application to Problems with Plane and Spherical Symmetry,", Document no. CRT-338 (N.R.C. 1589), (1589).   Google Scholar

[28]

R. N. Slaybaugh, M. L. Williams, D. Ilas, D. E. Peplow, B. L. Kirk, T. L. Nichols, Y. Y. Azmy and M. P. Langer, Radiation treatment planning using discrete ordinates codes,, Transactions of the American Nuclear Society, 96 (2007), 343.   Google Scholar

[29]

D. M. Shepard, M. C. Ferris, G. H. Olivera and T. R. Mackie, Optimizing the delivery of radiation therapy to cancer patients,, SIAM Rev., 41 (1999), 721.   Google Scholar

[30]

J. Tervo and P. Kolmonen, Inverse radiotherapy treatment planning model applying Boltzmann-transport equation,, Math. Models. Methods. Appl. Sci., 12 (2002), 109.  doi: 10.1142/S021820250200157X.  Google Scholar

[31]

G. G. Steel, J. M. Deacon, G. M. Duchesne, A. Horwich, L. R. Kelland and J. H. Peacock, The dose-rate effect in human tumour cells,, Radiotherapy and Oncology, 9 (1987), 299.   Google Scholar

[32]

G. G. Steel, J. D. Down, J. H. Peacock and T. C. Stephens, Dose-rate effects and the repair of radiation damage,, Radiotherapy and Oncology, 5 (1986), 321.   Google Scholar

[33]

H. Struchtrup, On the number of moments in radiative transfer problems,, Annals of Physics, 266 (1998), 1.  doi: 10.1006/aphy.1998.5791.  Google Scholar

[34]

J. Tervo, On coupled Boltzmann transport equation related to radiation therapy,, J. Math. Anal. Appl., 335 (2007), 819.  doi: 10.1016/j.jmaa.2007.01.092.  Google Scholar

[35]

J. Tervo, M. Vauhkonen and E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation,, Linear Algebra and its Applications, 428 (2008), 1230.  doi: 10.1016/j.laa.2007.03.003.  Google Scholar

[36]

J. Tervo, P. Kolmonen, M. Vauhkonen, L. M. Heikkinen and J. P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem,, Inv. Probl., 15 (1999), 1345.  doi: 10.1088/0266-5611/15/5/316.  Google Scholar

[37]

F. Tröltzsch, "Optimal Control of Partial Differential Equations. Theory, Methods and Applications,", Graduate Studies in Mathematics, 112 (2010).   Google Scholar

show all references

References:
[1]

R. Barnard, M. Frank and M. Herty, Optimal radiotherapy treatment planning using minimum entropy models,, preprint, (2011).   Google Scholar

[2]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling),, Math. Mod. Math. Appl. Sci., 15 (2005).   Google Scholar

[3]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling II),, Math. Mod. Math. Appl. Sci., 16 (2006).   Google Scholar

[4]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling),, Math. Mod. Math. Appl. Sci., 17 (2007).   Google Scholar

[5]

K. K. Bucci, A. Bevan and M. Roach III, Advances in radiation therapy: Conventional to 3d, to IMRT, to 4d, and beyond},, CA Cancer J. Clin., 55 (2005), 117.   Google Scholar

[6]

C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods,, Phys. Med. Biol., 43 (1998), 517.  doi: 10.1088/0031-9155/43/3/004.  Google Scholar

[7]

C. Börgers, The radiation therapy planning problem,, in, 110 (1999), 1.   Google Scholar

[8]

T. Brunner, "Forms of Approximate Radiation Transport,", Sandia Report, (2002).   Google Scholar

[9]

R. G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy,, Br. J. Radiol., 58 (1985), 515.  doi: 10.1259/0007-1285-58-690-515.  Google Scholar

[10]

P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation,, Transport Theory and Statistical Physics, 16 (1987), 589.  doi: 10.1080/00411458708204307.  Google Scholar

[11]

B. Dubroca and J.-L. Feugeas, Étude théorique et numérique d'une hiérarchie de modèles aux moments pout le transfert radiatif,, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 915.   Google Scholar

[12]

R. Duclous, B. Dubroca and M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy,, Physics in Medicine and Biology, 55 (2010).  doi: 10.1088/0031-9155/55/13/018.  Google Scholar

[13]

M. Frank, Approximate Models for Radiative Transfer,, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 2 (2007), 409.   Google Scholar

[14]

M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer,, Journal of Computational Physics, 218 (2006), 1.  doi: 10.1016/j.jcp.2006.01.038.  Google Scholar

[15]

M. Frank, M. Herty and A. N. Sandjo, Optimal radiotherapy treatment plannig governed by kinetic equations,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 661.  doi: 10.1142/S0218202510004386.  Google Scholar

[16]

M. Frank, M. Herty and M. Schäfer, Optimal treatment plannig in radiotherapy based on Boltzmann transport calculation,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 573.  doi: 10.1142/S0218202508002784.  Google Scholar

[17]

K. A. Gifford, J. L. Horton Jr., T. A. Wareing, G. Failla and F. Mourtada, Comparioson of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations,, Phys. Med. Biol., 51 (2006), 2253.   Google Scholar

[18]

H. Hensel, R. Iza-Teran and Norbert Siedow, Deterministic model for dose calculation in photon radiotherapy,, Physics in Medicine and Biology, 51 (2006), 675.  doi: 10.1088/0031-9155/51/3/013.  Google Scholar

[19]

M. Herty and A. N. Sandjo, On Optimal treatment plannig in radiotherapy governed by transport equations,, Mathematical Models and Methods in Applied Sciences, 21 (2011), 345.  doi: 10.1142/S0218202511005076.  Google Scholar

[20]

M. Herty, R. Pinnau and M. Seaid, Optimal control in radiative transfer,, Optimization Methods and Software, 22 (2007), 917.   Google Scholar

[21]

E. W. Larsen, M. M. Miften, B. A. Fraass and I. A. D. Bruinvis, Electron dose calculations using the method of moments,, Med. Phys., 24 (1997), 111.  doi: 10.1118/1.597920.  Google Scholar

[22]

E. W. Larsen, Tutorial: The nature of transport calculations used in radiation oncology,, Transp. Theory Stat. Phys., 26 (1997).   Google Scholar

[23]

J. L. Lions, "Équations Differentielles Operationnelles et Problèmes aux Limites,", Die Grundlehren der mathematischen Wissenschaften, (1961).   Google Scholar

[24]

D. Jackson, "Fourier Series and Orthogonal Functions,", Carus Mathematical Monograph Series, (1941).   Google Scholar

[25]

K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, F. Alonso, A. S. A. Sultan, T. Bortfeld and C. Thieke, Multicriteria optimizaton in intensity modulated radiotherapy planning,, in, 26 (2009), 123.   Google Scholar

[26]

J. C. Mark, "The Spherical Harmonics Method. I. (General Development of the Theory),", Document no. CRT-340 (N.R.C. 1588), (1588).   Google Scholar

[27]

J. C. Mark, "The Spherical Harmonics Method. II. (Application to Problems with Plane and Spherical Symmetry,", Document no. CRT-338 (N.R.C. 1589), (1589).   Google Scholar

[28]

R. N. Slaybaugh, M. L. Williams, D. Ilas, D. E. Peplow, B. L. Kirk, T. L. Nichols, Y. Y. Azmy and M. P. Langer, Radiation treatment planning using discrete ordinates codes,, Transactions of the American Nuclear Society, 96 (2007), 343.   Google Scholar

[29]

D. M. Shepard, M. C. Ferris, G. H. Olivera and T. R. Mackie, Optimizing the delivery of radiation therapy to cancer patients,, SIAM Rev., 41 (1999), 721.   Google Scholar

[30]

J. Tervo and P. Kolmonen, Inverse radiotherapy treatment planning model applying Boltzmann-transport equation,, Math. Models. Methods. Appl. Sci., 12 (2002), 109.  doi: 10.1142/S021820250200157X.  Google Scholar

[31]

G. G. Steel, J. M. Deacon, G. M. Duchesne, A. Horwich, L. R. Kelland and J. H. Peacock, The dose-rate effect in human tumour cells,, Radiotherapy and Oncology, 9 (1987), 299.   Google Scholar

[32]

G. G. Steel, J. D. Down, J. H. Peacock and T. C. Stephens, Dose-rate effects and the repair of radiation damage,, Radiotherapy and Oncology, 5 (1986), 321.   Google Scholar

[33]

H. Struchtrup, On the number of moments in radiative transfer problems,, Annals of Physics, 266 (1998), 1.  doi: 10.1006/aphy.1998.5791.  Google Scholar

[34]

J. Tervo, On coupled Boltzmann transport equation related to radiation therapy,, J. Math. Anal. Appl., 335 (2007), 819.  doi: 10.1016/j.jmaa.2007.01.092.  Google Scholar

[35]

J. Tervo, M. Vauhkonen and E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation,, Linear Algebra and its Applications, 428 (2008), 1230.  doi: 10.1016/j.laa.2007.03.003.  Google Scholar

[36]

J. Tervo, P. Kolmonen, M. Vauhkonen, L. M. Heikkinen and J. P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem,, Inv. Probl., 15 (1999), 1345.  doi: 10.1088/0266-5611/15/5/316.  Google Scholar

[37]

F. Tröltzsch, "Optimal Control of Partial Differential Equations. Theory, Methods and Applications,", Graduate Studies in Mathematics, 112 (2010).   Google Scholar

[1]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[2]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[6]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[10]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[11]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[14]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[15]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[16]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (3)

[Back to Top]