September  2012, 5(3): 505-516. doi: 10.3934/krm.2012.5.505

Regularity criteria for the 3D MHD equations via partial derivatives

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R., China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

Received  December 2011 Revised  February 2012 Published  August 2012

In this paper, we establish two regularity criteria for the 3D MHD equations in terms of partial derivatives of the velocity field or the pressure. It is proved that if $\partial_3 u \in L^\beta(0,T; L^\alpha(\mathbb{R}^3)),~\mbox{with}~ \frac{2}{\beta}+\frac{3}{\alpha}\leq\frac{3(\alpha+2)}{4\alpha},~\alpha>2$, or $\nabla_h P \in L^\beta(0,T; L^{\alpha}(\mathbb{R}^3)),~\mbox{with}~\frac{2}{\beta}+\frac{3}{\alpha}< 3,~\alpha>\frac{9}{7},~\beta\geq 1$, then the weak solution $(u,b)$ is regular on $[0, T]$.
Citation: Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505
References:
[1]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[2]

C. Cao and E. S. Titi, Global regularity criterion for the 3DNavier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Ration. Mech. Anal., 202 (2011), 919.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[3]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919.   Google Scholar

[4]

H. Duan, On regularity criteria in terms of pressure for the 3D viscous MHD equations,, Appl. Anal. Available from: , ().   Google Scholar

[5]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodyna-mique,, Arch. Ration. Mech. Anal., 46 (1972), 241.   Google Scholar

[6]

J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations,, J. Math. Fluid Mech., 13 (2011), 557.  doi: 10.1007/s00021-010-0039-5.  Google Scholar

[7]

C. He and Y. Wang, On the regularity criteria for weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 238 (2007), 1.  doi: 10.1016/j.jde.2007.03.023.  Google Scholar

[8]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[9]

E. Ji and J. Lee, Some regularity criteria for the 3D incompressible magnetohydrodynamics,, J. Math. Anal. Appl., 369 (2010), 317.  doi: 10.1016/j.jmaa.2010.03.015.  Google Scholar

[10]

X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations involving partial components,, Nonlinear Anal. Real World Appl., 13 (2012), 410.   Google Scholar

[11]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: existence and uniqueness of strong solutions,, Math. Nachr., 188 (1997), 301.  doi: 10.1002/mana.19971880116.  Google Scholar

[12]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[13]

J. Wu, Regularity results for weak solutions of the 3D MHD equations,, Discrete Contin. Dyn. Syst., 10 (2004), 543.   Google Scholar

[14]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[15]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure,, Int. J. Non-Linear Mech., 41 (2006), 1174.  doi: 10.1016/j.ijnonlinmec.2006.12.001.  Google Scholar

[16]

Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbbR^3$,, Proc. Am. Math. Soc., 134 (2006), 149.  doi: 10.1090/S0002-9939-05-08118-9.  Google Scholar

[17]

Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $\mathbbR^N$,, Z. Angew. Math. Phys., 57 (2006), 384.  doi: 10.1007/s00033-005-0021-x.  Google Scholar

[18]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations,, Forum Math., 24 (2012), 691.   Google Scholar

[19]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

show all references

References:
[1]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[2]

C. Cao and E. S. Titi, Global regularity criterion for the 3DNavier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Ration. Mech. Anal., 202 (2011), 919.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[3]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919.   Google Scholar

[4]

H. Duan, On regularity criteria in terms of pressure for the 3D viscous MHD equations,, Appl. Anal. Available from: , ().   Google Scholar

[5]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodyna-mique,, Arch. Ration. Mech. Anal., 46 (1972), 241.   Google Scholar

[6]

J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations,, J. Math. Fluid Mech., 13 (2011), 557.  doi: 10.1007/s00021-010-0039-5.  Google Scholar

[7]

C. He and Y. Wang, On the regularity criteria for weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 238 (2007), 1.  doi: 10.1016/j.jde.2007.03.023.  Google Scholar

[8]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[9]

E. Ji and J. Lee, Some regularity criteria for the 3D incompressible magnetohydrodynamics,, J. Math. Anal. Appl., 369 (2010), 317.  doi: 10.1016/j.jmaa.2010.03.015.  Google Scholar

[10]

X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations involving partial components,, Nonlinear Anal. Real World Appl., 13 (2012), 410.   Google Scholar

[11]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: existence and uniqueness of strong solutions,, Math. Nachr., 188 (1997), 301.  doi: 10.1002/mana.19971880116.  Google Scholar

[12]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[13]

J. Wu, Regularity results for weak solutions of the 3D MHD equations,, Discrete Contin. Dyn. Syst., 10 (2004), 543.   Google Scholar

[14]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[15]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure,, Int. J. Non-Linear Mech., 41 (2006), 1174.  doi: 10.1016/j.ijnonlinmec.2006.12.001.  Google Scholar

[16]

Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbbR^3$,, Proc. Am. Math. Soc., 134 (2006), 149.  doi: 10.1090/S0002-9939-05-08118-9.  Google Scholar

[17]

Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $\mathbbR^N$,, Z. Angew. Math. Phys., 57 (2006), 384.  doi: 10.1007/s00033-005-0021-x.  Google Scholar

[18]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations,, Forum Math., 24 (2012), 691.   Google Scholar

[19]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

[1]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[2]

Jishan Fan, Tohru Ozawa. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic & Related Models, 2009, 2 (2) : 293-305. doi: 10.3934/krm.2009.2.293

[3]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[4]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[5]

Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899

[6]

Jishan Fan, Tohru Ozawa. Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion. Kinetic & Related Models, 2014, 7 (1) : 45-56. doi: 10.3934/krm.2014.7.45

[7]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[8]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[9]

Feng Cheng, Chao-Jiang Xu. On the Gevrey regularity of solutions to the 3D ideal MHD equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6485-6506. doi: 10.3934/dcds.2019281

[10]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[11]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[12]

Patrick Penel, Milan Pokorný. Improvement of some anisotropic regularity criteria for the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1401-1407. doi: 10.3934/dcdss.2013.6.1401

[13]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[14]

Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117

[15]

Yu-Zhu Wang, Yin-Xia Wang. Local existence of strong solutions to the three dimensional compressible MHD equations with partial viscosity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 851-866. doi: 10.3934/cpaa.2013.12.851

[16]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[17]

Quansen Jiu, Jitao Liu. Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 301-322. doi: 10.3934/dcds.2015.35.301

[18]

Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110

[19]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[20]

Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]