March  2012, 5(1): 51-95. doi: 10.3934/krm.2012.5.51

On a chemotaxis model with saturated chemotactic flux

1. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States

2. 

Mathematics Department, Tulane University, New Orleans, LA 70118

3. 

Department of Mathematics, Capital Normal University, Beijing 100048, China

Received  May 2011 Revised  August 2011 Published  January 2012

We propose a PDE chemotaxis model, which can be viewed as a regularization of the Patlak-Keller-Segel (PKS) system. Our modification is based on a fundamental physical property of the chemotactic flux function---its boundedness. This means that the cell velocity is proportional to the magnitude of the chemoattractant gradient only when the latter is small, while when the chemoattractant gradient tends to infinity the cell velocity saturates. Unlike the original PKS system, the solutions of the modified model do not blow up in either finite or infinite time in any number of spatial dimensions, thus making it possible to use bounded spiky steady states to model cell aggregation. After obtaining local and global existence results, we use the local and global bifurcation theories to show the existence of one-dimensional spiky steady states; we also study the stability of bifurcating steady states. Finally, we numerically verify these analytical results, and then demonstrate that solutions of the two-dimensional model with nonlinear saturated chemotactic flux function typically develop very complicated spiky structures.
Citation: Alina Chertock, Alexander Kurganov, Xuefeng Wang, Yaping Wu. On a chemotaxis model with saturated chemotactic flux. Kinetic & Related Models, 2012, 5 (1) : 51-95. doi: 10.3934/krm.2012.5.51
References:
[1]

Ann. Rev. Biochem., 44 (1975), 341-356. doi: 10.1146/annurev.bi.44.070175.002013.  Google Scholar

[2]

J. Math. Biol., 9 (1980), 147-177. doi: 10.1007/BF00275919.  Google Scholar

[3]

Differential Integral Equations, 3 (1990), 13-75.  Google Scholar

[4]

in "Function Spaces, Differential Operators and Nonlinear Analysis" (Friedrichroda, 1992), Teubner-Texte Math., 133, Teubner, Stuttgart, (1993), 9-126.  Google Scholar

[5]

2nd ed., Princeton University Press, Princeton, New Jersey, 1967. Google Scholar

[6]

Nature, 349 (1991), 630-633. doi: 10.1038/349630a0.  Google Scholar

[7]

Nature, 376 (1995), 49-53. doi: 10.1038/376049a0.  Google Scholar

[8]

A. Chertock, Y. Epshteyn and A. Kurganov, High-order finite-difference and finite-volume methods for chemotaxis models,, in preparartion., ().   Google Scholar

[9]

Math. Biosc., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[10]

J. Theor. Biol., 31 (1971), 101-118. doi: 10.1016/0022-5193(71)90124-X.  Google Scholar

[11]

J. Functional Analysis, 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[12]

Arch. Rational Mech. Anal., 52 (1973), 161-180. doi: 10.1007/BF00282325.  Google Scholar

[13]

SIAM Rev., 43 (2001), 89-112. doi: 10.1137/S003614450036757X.  Google Scholar

[14]

Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[15]

Ann. Scuola Normale Superiore Pisa Cl. Sci. (4), 24 (1997), 633-683.  Google Scholar

[16]

J. Sci. Comput., 39 (2009), 115-128. doi: 10.1007/s10915-008-9252-2.  Google Scholar

[17]

Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 125-144 (electronic). doi: 10.3934/dcdsb.2007.7.125.  Google Scholar

[18]

J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.  Google Scholar

[19]

Jahresber. DMV, 105 (2003), 103-165.  Google Scholar

[20]

Jahresber. DMV, 106 (2004), 51-69.  Google Scholar

[21]

J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[22]

J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[23]

J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[24]

Translated from the Russian by S. Smith, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967.  Google Scholar

[25]

World Scientific Publishing Co., Inc., River Edge, NJ, 1996.  Google Scholar

[26]

J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[27]

Funkcial. Ekvac., 40 (1997), 411-433.  Google Scholar

[28]

Notices Amer. Math. Soc., 45 (1998), 9-18.  Google Scholar

[29]

J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392.  Google Scholar

[30]

Bull. Math. Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407.  Google Scholar

[31]

Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.  Google Scholar

[32]

J. Anal. Math., 76 (1998), 289-319. doi: 10.1007/BF02786939.  Google Scholar

[33]

Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[34]

3rd ed., Wm. C. Brown Publishers, Chicago-London, 1996. Google Scholar

[35]

Chem. Eng. Sci., 44 (1989), 1-17. doi: 10.1016/0009-2509(89)85098-5.  Google Scholar

[36]

J. Differential Equations, 246 (2009), 2788-2812. doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[37]

SIAM J. Appl. Math., 65 (2005), 790-817 (electronic). doi: 10.1137/S0036139902415117.  Google Scholar

[38]

SIAM J. Math. Anal., 31 (2000), 535-560 (electronic). doi: 10.1137/S0036141098339897.  Google Scholar

[39]

Biophys. J., 68 (1995), 2181-2189. doi: 10.1016/S0006-3495(95)80400-5.  Google Scholar

show all references

References:
[1]

Ann. Rev. Biochem., 44 (1975), 341-356. doi: 10.1146/annurev.bi.44.070175.002013.  Google Scholar

[2]

J. Math. Biol., 9 (1980), 147-177. doi: 10.1007/BF00275919.  Google Scholar

[3]

Differential Integral Equations, 3 (1990), 13-75.  Google Scholar

[4]

in "Function Spaces, Differential Operators and Nonlinear Analysis" (Friedrichroda, 1992), Teubner-Texte Math., 133, Teubner, Stuttgart, (1993), 9-126.  Google Scholar

[5]

2nd ed., Princeton University Press, Princeton, New Jersey, 1967. Google Scholar

[6]

Nature, 349 (1991), 630-633. doi: 10.1038/349630a0.  Google Scholar

[7]

Nature, 376 (1995), 49-53. doi: 10.1038/376049a0.  Google Scholar

[8]

A. Chertock, Y. Epshteyn and A. Kurganov, High-order finite-difference and finite-volume methods for chemotaxis models,, in preparartion., ().   Google Scholar

[9]

Math. Biosc., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[10]

J. Theor. Biol., 31 (1971), 101-118. doi: 10.1016/0022-5193(71)90124-X.  Google Scholar

[11]

J. Functional Analysis, 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[12]

Arch. Rational Mech. Anal., 52 (1973), 161-180. doi: 10.1007/BF00282325.  Google Scholar

[13]

SIAM Rev., 43 (2001), 89-112. doi: 10.1137/S003614450036757X.  Google Scholar

[14]

Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[15]

Ann. Scuola Normale Superiore Pisa Cl. Sci. (4), 24 (1997), 633-683.  Google Scholar

[16]

J. Sci. Comput., 39 (2009), 115-128. doi: 10.1007/s10915-008-9252-2.  Google Scholar

[17]

Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 125-144 (electronic). doi: 10.3934/dcdsb.2007.7.125.  Google Scholar

[18]

J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.  Google Scholar

[19]

Jahresber. DMV, 105 (2003), 103-165.  Google Scholar

[20]

Jahresber. DMV, 106 (2004), 51-69.  Google Scholar

[21]

J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[22]

J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[23]

J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[24]

Translated from the Russian by S. Smith, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967.  Google Scholar

[25]

World Scientific Publishing Co., Inc., River Edge, NJ, 1996.  Google Scholar

[26]

J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[27]

Funkcial. Ekvac., 40 (1997), 411-433.  Google Scholar

[28]

Notices Amer. Math. Soc., 45 (1998), 9-18.  Google Scholar

[29]

J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392.  Google Scholar

[30]

Bull. Math. Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407.  Google Scholar

[31]

Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.  Google Scholar

[32]

J. Anal. Math., 76 (1998), 289-319. doi: 10.1007/BF02786939.  Google Scholar

[33]

Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[34]

3rd ed., Wm. C. Brown Publishers, Chicago-London, 1996. Google Scholar

[35]

Chem. Eng. Sci., 44 (1989), 1-17. doi: 10.1016/0009-2509(89)85098-5.  Google Scholar

[36]

J. Differential Equations, 246 (2009), 2788-2812. doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[37]

SIAM J. Appl. Math., 65 (2005), 790-817 (electronic). doi: 10.1137/S0036139902415117.  Google Scholar

[38]

SIAM J. Math. Anal., 31 (2000), 535-560 (electronic). doi: 10.1137/S0036141098339897.  Google Scholar

[39]

Biophys. J., 68 (1995), 2181-2189. doi: 10.1016/S0006-3495(95)80400-5.  Google Scholar

[1]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[2]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[3]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[4]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[5]

Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021088

[6]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[7]

Beixiang Fang, Qin Zhao. Uniqueness of steady 1-D shock solutions in a finite nozzle via vanishing viscosity aguments. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021066

[8]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[9]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[10]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[11]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[12]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[13]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[14]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[15]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[16]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[17]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[18]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[19]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[20]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (57)

[Back to Top]