-
Previous Article
Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain
- KRM Home
- This Issue
-
Next Article
Regularity criteria for the 3D MHD equations via partial derivatives
On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models
1. | Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain, Spain |
References:
[1] |
M. G. Ancona, Density-gradient theory analysis of electron distributions in heterostructures,, Superlattics and Microstructures, 7 (1990), 119.
doi: 10.1016/0749-6036(90)90124-P. |
[2] |
A. Arnold, J. L. López, P. Markowich and J. Soler, An analysis of quantum Fokker-Planck models: a Wigner function approach,, Rev. Mat. Iberoamericana, 20 (2004), 771.
doi: 10.4171/RMI/407. |
[3] |
G. Auberson and P. C. Sabatier, On a class of homogeneous nonlinear Schrödinger equations,, J. Math. Phys., 35 (1994), 4028.
doi: 10.1063/1.530840. |
[4] |
I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics,, Ann. Phys., 100 (1976), 62.
doi: 10.1016/0003-4916(76)90057-9. |
[5] |
S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum euler model,, Z. Angew. Math. Mech., 90 (2010), 219.
doi: 10.1002/zamm.200900297. |
[6] |
S. Burger, F. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. Chiofalo and M.Tosi, Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optimal potential,, Phys. Rev. Lett., 86 (2001), 4447.
doi: 10.1103/PhysRevLett.86.4447. |
[7] |
P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle,, J. Stat. Phys., 112 (2003), 587.
doi: 10.1023/A:1023824008525. |
[8] |
H. D. Doebner and G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusioncurrents,, Phys. Lett., 162 (1992), 397.
doi: 10.1016/0375-9601(92)90061-P. |
[9] |
H. D. Doebner and G. A. Goldin, Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations,, J. Phys. A: Math. Gen., 27 (1994), 1771.
doi: 10.1088/0305-4470/27/5/036. |
[10] |
H. D. Doebner and G. A. Goldin, Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations,, Phys. Rev. A (3), 54 (1996), 3764.
doi: 10.1103/PhysRevA.54.3764. |
[11] |
H. D. Doebner, G. A. Goldin and P. Nattermann, A family of nonlinear Schrödinger equations: linearizing transformations and resulting structure, in "Quantization, Coherent States and Complex Structures" (eds. J.-P. Antoine et al.),, Plenum, (1996), 27.
|
[12] |
P. Frampton, "Gauge Field Theories,", Wiley-VCH, (2008).
doi: 10.1002/9783527623358. |
[13] |
L. Fritsche and M. Haugk, A new look at the derivation of the Schrödinger equation from Newtonian mechanics,, Ann. Phys., 12 (2003), 371.
doi: 10.1002/andp.200310017. |
[14] |
P. Garbaczewski, Modular Schrödinger equation and dynamical duality,, Phys. Rev. E (3), 78 (2008).
doi: 10.1103/PhysRevE.78.031101. |
[15] |
M. P. Gualdani and A. Jüngel, Analysis of the viscous quantum hydrodynamic equations for semiconductors,, Europ. J. Appl. Math., 15 (2004), 577.
doi: 10.1017/S0956792504005686. |
[16] |
P. Guerrero, J. L. López and J. Nieto, Global $H^1$ solvability of the 3D logarithmic Schrödinger equation,, Nonlinear Analysis R. W. A., 11 (2010), 79.
doi: 10.1016/j.nonrwa.2008.10.017. |
[17] |
P. Guerrero, J. L. López, J. Montejo-Gámez, J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner-Goldin type modeling quantum dissipation,, preprint., (). Google Scholar |
[18] |
R. Harvey, Navier-Stokes analog of quantum mechanics,, Phys. Rev., 152 (1966).
doi: 10.1103/PhysRev.152.1115. |
[19] |
A. Jüngel, "Transport Equations for Semiconductors,", Lect. Notes Phys., 773 (2009).
|
[20] |
A. Jüngel, Effective velocity in compressible Navier-Stokes equations wirth third-order derivatives,, Nonlinear Analysis, 74 (2011), 2813.
doi: 10.1016/j.na.2011.01.002. |
[21] |
A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids,, SIAM J. Math. Anal., 42 (2010), 1025.
doi: 10.1137/090776068. |
[22] |
A. Jüngel, J. L. López and J. Montejo-Gámez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach,, To appear in J. Stat. Phys., 145 (2011), 1661.
|
[23] |
A. Jüngel and J.-P. Milisić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution equations,, Kinetic and related models, 4 (2011), 785.
|
[24] |
A. Jüngel, M. C. Mariani and D. Rial, Local existence of solutions to the transient quantum hydrodynamic equations,, Math. Models Meth. Appl. Sci., 12 (2002), 485.
doi: 10.1142/S0218202502001751. |
[25] |
G. Kaniadakis and A. M. Scarfone, Nonlinear transformation for a class of gauged Schrödinger equations with complex nonlinearities,, Reports on Math. Phys., 48 (2001), 115.
doi: 10.1016/S0034-4877(01)80070-7. |
[26] |
J. L. López, Nonlinear Ginzburg-Landau-type approach to quantum dissipation,, Phys. Rev. E., 69 (2004).
doi: 10.1103/PhysRevE.69.026110. |
[27] |
J. L. López, J. Montejo-Gámez, A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker-Planck dynamics,, Physica D, 238 (2009), 622.
|
[28] |
R. Mosna, I. Hamilton and L. Delle Site, Variational approach to dequantization,, J. Phys. A, 39 (2006).
doi: 10.1088/0305-4470/39/14/L03. |
[29] |
P. Nattermann and W. Scherer, Nonlinear gauge transformations and exact solutions of the Doebner-Goldin equation, in "Nonlinear, Deformed and Irreversible Quantum Systems" (eds. Doebner et al.),, World Scientific, (1995), 188.
|
[30] |
P. Nattermann and R. Zhdanov, On integrable Doebner-Goldin equations,, J. Phys. A, 29 (1996), 2869.
doi: 10.1088/0305-4470/29/11/021. |
[31] |
E. Nelson, Derivation of the Schrödinger equation from Newtonian Mechanics,, Phys. Rev., 150 (1966), 1079.
doi: 10.1103/PhysRev.150.1079. |
[32] |
C. Sabatier, Multidimensional nonlinear Schrödinger equations with exponentially confined solutions,, Inverse Problems, 6 (1990).
doi: 10.1088/0266-5611/6/5/002. |
[33] |
A. Scarfone, Gauge equivalence among quantum nonlinear many body systems,, Act. Appl. Math., 102 (2008), 179.
doi: 10.1007/s10440-008-9213-7. |
[34] |
A. G. Ushveridze, Dissipative quantum mechanics. A special Doebner-Goldin equation, its properties and exact solutions,, Phys. Lett. A, 185 (1994), 123.
doi: 10.1016/0375-9601(94)90834-6. |
[35] |
A. G. Ushveridze, The special Doebner-Goldin equation as a fundamental equation of dissipative quantum mechanics,, Phys. Lett. A, 185 (1994), 128.
doi: 10.1016/0375-9601(94)90835-4. |
show all references
References:
[1] |
M. G. Ancona, Density-gradient theory analysis of electron distributions in heterostructures,, Superlattics and Microstructures, 7 (1990), 119.
doi: 10.1016/0749-6036(90)90124-P. |
[2] |
A. Arnold, J. L. López, P. Markowich and J. Soler, An analysis of quantum Fokker-Planck models: a Wigner function approach,, Rev. Mat. Iberoamericana, 20 (2004), 771.
doi: 10.4171/RMI/407. |
[3] |
G. Auberson and P. C. Sabatier, On a class of homogeneous nonlinear Schrödinger equations,, J. Math. Phys., 35 (1994), 4028.
doi: 10.1063/1.530840. |
[4] |
I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics,, Ann. Phys., 100 (1976), 62.
doi: 10.1016/0003-4916(76)90057-9. |
[5] |
S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum euler model,, Z. Angew. Math. Mech., 90 (2010), 219.
doi: 10.1002/zamm.200900297. |
[6] |
S. Burger, F. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. Chiofalo and M.Tosi, Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optimal potential,, Phys. Rev. Lett., 86 (2001), 4447.
doi: 10.1103/PhysRevLett.86.4447. |
[7] |
P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle,, J. Stat. Phys., 112 (2003), 587.
doi: 10.1023/A:1023824008525. |
[8] |
H. D. Doebner and G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusioncurrents,, Phys. Lett., 162 (1992), 397.
doi: 10.1016/0375-9601(92)90061-P. |
[9] |
H. D. Doebner and G. A. Goldin, Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations,, J. Phys. A: Math. Gen., 27 (1994), 1771.
doi: 10.1088/0305-4470/27/5/036. |
[10] |
H. D. Doebner and G. A. Goldin, Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations,, Phys. Rev. A (3), 54 (1996), 3764.
doi: 10.1103/PhysRevA.54.3764. |
[11] |
H. D. Doebner, G. A. Goldin and P. Nattermann, A family of nonlinear Schrödinger equations: linearizing transformations and resulting structure, in "Quantization, Coherent States and Complex Structures" (eds. J.-P. Antoine et al.),, Plenum, (1996), 27.
|
[12] |
P. Frampton, "Gauge Field Theories,", Wiley-VCH, (2008).
doi: 10.1002/9783527623358. |
[13] |
L. Fritsche and M. Haugk, A new look at the derivation of the Schrödinger equation from Newtonian mechanics,, Ann. Phys., 12 (2003), 371.
doi: 10.1002/andp.200310017. |
[14] |
P. Garbaczewski, Modular Schrödinger equation and dynamical duality,, Phys. Rev. E (3), 78 (2008).
doi: 10.1103/PhysRevE.78.031101. |
[15] |
M. P. Gualdani and A. Jüngel, Analysis of the viscous quantum hydrodynamic equations for semiconductors,, Europ. J. Appl. Math., 15 (2004), 577.
doi: 10.1017/S0956792504005686. |
[16] |
P. Guerrero, J. L. López and J. Nieto, Global $H^1$ solvability of the 3D logarithmic Schrödinger equation,, Nonlinear Analysis R. W. A., 11 (2010), 79.
doi: 10.1016/j.nonrwa.2008.10.017. |
[17] |
P. Guerrero, J. L. López, J. Montejo-Gámez, J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner-Goldin type modeling quantum dissipation,, preprint., (). Google Scholar |
[18] |
R. Harvey, Navier-Stokes analog of quantum mechanics,, Phys. Rev., 152 (1966).
doi: 10.1103/PhysRev.152.1115. |
[19] |
A. Jüngel, "Transport Equations for Semiconductors,", Lect. Notes Phys., 773 (2009).
|
[20] |
A. Jüngel, Effective velocity in compressible Navier-Stokes equations wirth third-order derivatives,, Nonlinear Analysis, 74 (2011), 2813.
doi: 10.1016/j.na.2011.01.002. |
[21] |
A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids,, SIAM J. Math. Anal., 42 (2010), 1025.
doi: 10.1137/090776068. |
[22] |
A. Jüngel, J. L. López and J. Montejo-Gámez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach,, To appear in J. Stat. Phys., 145 (2011), 1661.
|
[23] |
A. Jüngel and J.-P. Milisić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution equations,, Kinetic and related models, 4 (2011), 785.
|
[24] |
A. Jüngel, M. C. Mariani and D. Rial, Local existence of solutions to the transient quantum hydrodynamic equations,, Math. Models Meth. Appl. Sci., 12 (2002), 485.
doi: 10.1142/S0218202502001751. |
[25] |
G. Kaniadakis and A. M. Scarfone, Nonlinear transformation for a class of gauged Schrödinger equations with complex nonlinearities,, Reports on Math. Phys., 48 (2001), 115.
doi: 10.1016/S0034-4877(01)80070-7. |
[26] |
J. L. López, Nonlinear Ginzburg-Landau-type approach to quantum dissipation,, Phys. Rev. E., 69 (2004).
doi: 10.1103/PhysRevE.69.026110. |
[27] |
J. L. López, J. Montejo-Gámez, A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker-Planck dynamics,, Physica D, 238 (2009), 622.
|
[28] |
R. Mosna, I. Hamilton and L. Delle Site, Variational approach to dequantization,, J. Phys. A, 39 (2006).
doi: 10.1088/0305-4470/39/14/L03. |
[29] |
P. Nattermann and W. Scherer, Nonlinear gauge transformations and exact solutions of the Doebner-Goldin equation, in "Nonlinear, Deformed and Irreversible Quantum Systems" (eds. Doebner et al.),, World Scientific, (1995), 188.
|
[30] |
P. Nattermann and R. Zhdanov, On integrable Doebner-Goldin equations,, J. Phys. A, 29 (1996), 2869.
doi: 10.1088/0305-4470/29/11/021. |
[31] |
E. Nelson, Derivation of the Schrödinger equation from Newtonian Mechanics,, Phys. Rev., 150 (1966), 1079.
doi: 10.1103/PhysRev.150.1079. |
[32] |
C. Sabatier, Multidimensional nonlinear Schrödinger equations with exponentially confined solutions,, Inverse Problems, 6 (1990).
doi: 10.1088/0266-5611/6/5/002. |
[33] |
A. Scarfone, Gauge equivalence among quantum nonlinear many body systems,, Act. Appl. Math., 102 (2008), 179.
doi: 10.1007/s10440-008-9213-7. |
[34] |
A. G. Ushveridze, Dissipative quantum mechanics. A special Doebner-Goldin equation, its properties and exact solutions,, Phys. Lett. A, 185 (1994), 123.
doi: 10.1016/0375-9601(94)90834-6. |
[35] |
A. G. Ushveridze, The special Doebner-Goldin equation as a fundamental equation of dissipative quantum mechanics,, Phys. Lett. A, 185 (1994), 128.
doi: 10.1016/0375-9601(94)90835-4. |
[1] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[2] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[3] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[4] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[5] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[6] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[7] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[8] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[9] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[10] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[11] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[12] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[13] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[14] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[15] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[16] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[17] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[18] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[19] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[20] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]