September  2012, 5(3): 517-536. doi: 10.3934/krm.2012.5.517

On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models

1. 

Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain, Spain

Received  December 2011 Revised  May 2012 Published  August 2012

The aim of this paper is to derive the quantum hydrodynamic system associated with the most general class of nonlinear Schrödinger equations accounting for Fokker--Planck type diffusion of the probability density, called of Doebner--Goldin. This 'Doebner--Goldin hydrodynamic system' is shown to be reduced in most cases to a simpler one of quantum Euler type by means of the introduction of a nonlinear gauge transformation that changes the fluid mean velocity into a new effective velocity corrected by an osmotic contribution. Finally, we also discuss some particular situations of especial interest and compare the structure of the resulting fluid systems with that of the viscous quantum hydrodynamic and the quantum Navier--Stokes equations stemming from maximization of the quantum entropy for Wigner--BGK models.
Citation: José Luis López, Jesús Montejo-Gámez. On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models. Kinetic & Related Models, 2012, 5 (3) : 517-536. doi: 10.3934/krm.2012.5.517
References:
[1]

M. G. Ancona, Density-gradient theory analysis of electron distributions in heterostructures,, Superlattics and Microstructures, 7 (1990), 119.  doi: 10.1016/0749-6036(90)90124-P.  Google Scholar

[2]

A. Arnold, J. L. López, P. Markowich and J. Soler, An analysis of quantum Fokker-Planck models: a Wigner function approach,, Rev. Mat. Iberoamericana, 20 (2004), 771.  doi: 10.4171/RMI/407.  Google Scholar

[3]

G. Auberson and P. C. Sabatier, On a class of homogeneous nonlinear Schrödinger equations,, J. Math. Phys., 35 (1994), 4028.  doi: 10.1063/1.530840.  Google Scholar

[4]

I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics,, Ann. Phys., 100 (1976), 62.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[5]

S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum euler model,, Z. Angew. Math. Mech., 90 (2010), 219.  doi: 10.1002/zamm.200900297.  Google Scholar

[6]

S. Burger, F. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. Chiofalo and M.Tosi, Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optimal potential,, Phys. Rev. Lett., 86 (2001), 4447.  doi: 10.1103/PhysRevLett.86.4447.  Google Scholar

[7]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle,, J. Stat. Phys., 112 (2003), 587.  doi: 10.1023/A:1023824008525.  Google Scholar

[8]

H. D. Doebner and G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusioncurrents,, Phys. Lett., 162 (1992), 397.  doi: 10.1016/0375-9601(92)90061-P.  Google Scholar

[9]

H. D. Doebner and G. A. Goldin, Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations,, J. Phys. A: Math. Gen., 27 (1994), 1771.  doi: 10.1088/0305-4470/27/5/036.  Google Scholar

[10]

H. D. Doebner and G. A. Goldin, Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations,, Phys. Rev. A (3), 54 (1996), 3764.  doi: 10.1103/PhysRevA.54.3764.  Google Scholar

[11]

H. D. Doebner, G. A. Goldin and P. Nattermann, A family of nonlinear Schrödinger equations: linearizing transformations and resulting structure, in "Quantization, Coherent States and Complex Structures" (eds. J.-P. Antoine et al.),, Plenum, (1996), 27.   Google Scholar

[12]

P. Frampton, "Gauge Field Theories,", Wiley-VCH, (2008).  doi: 10.1002/9783527623358.  Google Scholar

[13]

L. Fritsche and M. Haugk, A new look at the derivation of the Schrödinger equation from Newtonian mechanics,, Ann. Phys., 12 (2003), 371.  doi: 10.1002/andp.200310017.  Google Scholar

[14]

P. Garbaczewski, Modular Schrödinger equation and dynamical duality,, Phys. Rev. E (3), 78 (2008).  doi: 10.1103/PhysRevE.78.031101.  Google Scholar

[15]

M. P. Gualdani and A. Jüngel, Analysis of the viscous quantum hydrodynamic equations for semiconductors,, Europ. J. Appl. Math., 15 (2004), 577.  doi: 10.1017/S0956792504005686.  Google Scholar

[16]

P. Guerrero, J. L. López and J. Nieto, Global $H^1$ solvability of the 3D logarithmic Schrödinger equation,, Nonlinear Analysis R. W. A., 11 (2010), 79.  doi: 10.1016/j.nonrwa.2008.10.017.  Google Scholar

[17]

P. Guerrero, J. L. López, J. Montejo-Gámez, J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner-Goldin type modeling quantum dissipation,, preprint., ().   Google Scholar

[18]

R. Harvey, Navier-Stokes analog of quantum mechanics,, Phys. Rev., 152 (1966).  doi: 10.1103/PhysRev.152.1115.  Google Scholar

[19]

A. Jüngel, "Transport Equations for Semiconductors,", Lect. Notes Phys., 773 (2009).   Google Scholar

[20]

A. Jüngel, Effective velocity in compressible Navier-Stokes equations wirth third-order derivatives,, Nonlinear Analysis, 74 (2011), 2813.  doi: 10.1016/j.na.2011.01.002.  Google Scholar

[21]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids,, SIAM J. Math. Anal., 42 (2010), 1025.  doi: 10.1137/090776068.  Google Scholar

[22]

A. Jüngel, J. L. López and J. Montejo-Gámez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach,, To appear in J. Stat. Phys., 145 (2011), 1661.   Google Scholar

[23]

A. Jüngel and J.-P. Milisić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution equations,, Kinetic and related models, 4 (2011), 785.   Google Scholar

[24]

A. Jüngel, M. C. Mariani and D. Rial, Local existence of solutions to the transient quantum hydrodynamic equations,, Math. Models Meth. Appl. Sci., 12 (2002), 485.  doi: 10.1142/S0218202502001751.  Google Scholar

[25]

G. Kaniadakis and A. M. Scarfone, Nonlinear transformation for a class of gauged Schrödinger equations with complex nonlinearities,, Reports on Math. Phys., 48 (2001), 115.  doi: 10.1016/S0034-4877(01)80070-7.  Google Scholar

[26]

J. L. López, Nonlinear Ginzburg-Landau-type approach to quantum dissipation,, Phys. Rev. E., 69 (2004).  doi: 10.1103/PhysRevE.69.026110.  Google Scholar

[27]

J. L. López, J. Montejo-Gámez, A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker-Planck dynamics,, Physica D, 238 (2009), 622.   Google Scholar

[28]

R. Mosna, I. Hamilton and L. Delle Site, Variational approach to dequantization,, J. Phys. A, 39 (2006).  doi: 10.1088/0305-4470/39/14/L03.  Google Scholar

[29]

P. Nattermann and W. Scherer, Nonlinear gauge transformations and exact solutions of the Doebner-Goldin equation, in "Nonlinear, Deformed and Irreversible Quantum Systems" (eds. Doebner et al.),, World Scientific, (1995), 188.   Google Scholar

[30]

P. Nattermann and R. Zhdanov, On integrable Doebner-Goldin equations,, J. Phys. A, 29 (1996), 2869.  doi: 10.1088/0305-4470/29/11/021.  Google Scholar

[31]

E. Nelson, Derivation of the Schrödinger equation from Newtonian Mechanics,, Phys. Rev., 150 (1966), 1079.  doi: 10.1103/PhysRev.150.1079.  Google Scholar

[32]

C. Sabatier, Multidimensional nonlinear Schrödinger equations with exponentially confined solutions,, Inverse Problems, 6 (1990).  doi: 10.1088/0266-5611/6/5/002.  Google Scholar

[33]

A. Scarfone, Gauge equivalence among quantum nonlinear many body systems,, Act. Appl. Math., 102 (2008), 179.  doi: 10.1007/s10440-008-9213-7.  Google Scholar

[34]

A. G. Ushveridze, Dissipative quantum mechanics. A special Doebner-Goldin equation, its properties and exact solutions,, Phys. Lett. A, 185 (1994), 123.  doi: 10.1016/0375-9601(94)90834-6.  Google Scholar

[35]

A. G. Ushveridze, The special Doebner-Goldin equation as a fundamental equation of dissipative quantum mechanics,, Phys. Lett. A, 185 (1994), 128.  doi: 10.1016/0375-9601(94)90835-4.  Google Scholar

show all references

References:
[1]

M. G. Ancona, Density-gradient theory analysis of electron distributions in heterostructures,, Superlattics and Microstructures, 7 (1990), 119.  doi: 10.1016/0749-6036(90)90124-P.  Google Scholar

[2]

A. Arnold, J. L. López, P. Markowich and J. Soler, An analysis of quantum Fokker-Planck models: a Wigner function approach,, Rev. Mat. Iberoamericana, 20 (2004), 771.  doi: 10.4171/RMI/407.  Google Scholar

[3]

G. Auberson and P. C. Sabatier, On a class of homogeneous nonlinear Schrödinger equations,, J. Math. Phys., 35 (1994), 4028.  doi: 10.1063/1.530840.  Google Scholar

[4]

I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics,, Ann. Phys., 100 (1976), 62.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[5]

S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum euler model,, Z. Angew. Math. Mech., 90 (2010), 219.  doi: 10.1002/zamm.200900297.  Google Scholar

[6]

S. Burger, F. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. Chiofalo and M.Tosi, Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optimal potential,, Phys. Rev. Lett., 86 (2001), 4447.  doi: 10.1103/PhysRevLett.86.4447.  Google Scholar

[7]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle,, J. Stat. Phys., 112 (2003), 587.  doi: 10.1023/A:1023824008525.  Google Scholar

[8]

H. D. Doebner and G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusioncurrents,, Phys. Lett., 162 (1992), 397.  doi: 10.1016/0375-9601(92)90061-P.  Google Scholar

[9]

H. D. Doebner and G. A. Goldin, Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations,, J. Phys. A: Math. Gen., 27 (1994), 1771.  doi: 10.1088/0305-4470/27/5/036.  Google Scholar

[10]

H. D. Doebner and G. A. Goldin, Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations,, Phys. Rev. A (3), 54 (1996), 3764.  doi: 10.1103/PhysRevA.54.3764.  Google Scholar

[11]

H. D. Doebner, G. A. Goldin and P. Nattermann, A family of nonlinear Schrödinger equations: linearizing transformations and resulting structure, in "Quantization, Coherent States and Complex Structures" (eds. J.-P. Antoine et al.),, Plenum, (1996), 27.   Google Scholar

[12]

P. Frampton, "Gauge Field Theories,", Wiley-VCH, (2008).  doi: 10.1002/9783527623358.  Google Scholar

[13]

L. Fritsche and M. Haugk, A new look at the derivation of the Schrödinger equation from Newtonian mechanics,, Ann. Phys., 12 (2003), 371.  doi: 10.1002/andp.200310017.  Google Scholar

[14]

P. Garbaczewski, Modular Schrödinger equation and dynamical duality,, Phys. Rev. E (3), 78 (2008).  doi: 10.1103/PhysRevE.78.031101.  Google Scholar

[15]

M. P. Gualdani and A. Jüngel, Analysis of the viscous quantum hydrodynamic equations for semiconductors,, Europ. J. Appl. Math., 15 (2004), 577.  doi: 10.1017/S0956792504005686.  Google Scholar

[16]

P. Guerrero, J. L. López and J. Nieto, Global $H^1$ solvability of the 3D logarithmic Schrödinger equation,, Nonlinear Analysis R. W. A., 11 (2010), 79.  doi: 10.1016/j.nonrwa.2008.10.017.  Google Scholar

[17]

P. Guerrero, J. L. López, J. Montejo-Gámez, J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner-Goldin type modeling quantum dissipation,, preprint., ().   Google Scholar

[18]

R. Harvey, Navier-Stokes analog of quantum mechanics,, Phys. Rev., 152 (1966).  doi: 10.1103/PhysRev.152.1115.  Google Scholar

[19]

A. Jüngel, "Transport Equations for Semiconductors,", Lect. Notes Phys., 773 (2009).   Google Scholar

[20]

A. Jüngel, Effective velocity in compressible Navier-Stokes equations wirth third-order derivatives,, Nonlinear Analysis, 74 (2011), 2813.  doi: 10.1016/j.na.2011.01.002.  Google Scholar

[21]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids,, SIAM J. Math. Anal., 42 (2010), 1025.  doi: 10.1137/090776068.  Google Scholar

[22]

A. Jüngel, J. L. López and J. Montejo-Gámez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach,, To appear in J. Stat. Phys., 145 (2011), 1661.   Google Scholar

[23]

A. Jüngel and J.-P. Milisić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution equations,, Kinetic and related models, 4 (2011), 785.   Google Scholar

[24]

A. Jüngel, M. C. Mariani and D. Rial, Local existence of solutions to the transient quantum hydrodynamic equations,, Math. Models Meth. Appl. Sci., 12 (2002), 485.  doi: 10.1142/S0218202502001751.  Google Scholar

[25]

G. Kaniadakis and A. M. Scarfone, Nonlinear transformation for a class of gauged Schrödinger equations with complex nonlinearities,, Reports on Math. Phys., 48 (2001), 115.  doi: 10.1016/S0034-4877(01)80070-7.  Google Scholar

[26]

J. L. López, Nonlinear Ginzburg-Landau-type approach to quantum dissipation,, Phys. Rev. E., 69 (2004).  doi: 10.1103/PhysRevE.69.026110.  Google Scholar

[27]

J. L. López, J. Montejo-Gámez, A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker-Planck dynamics,, Physica D, 238 (2009), 622.   Google Scholar

[28]

R. Mosna, I. Hamilton and L. Delle Site, Variational approach to dequantization,, J. Phys. A, 39 (2006).  doi: 10.1088/0305-4470/39/14/L03.  Google Scholar

[29]

P. Nattermann and W. Scherer, Nonlinear gauge transformations and exact solutions of the Doebner-Goldin equation, in "Nonlinear, Deformed and Irreversible Quantum Systems" (eds. Doebner et al.),, World Scientific, (1995), 188.   Google Scholar

[30]

P. Nattermann and R. Zhdanov, On integrable Doebner-Goldin equations,, J. Phys. A, 29 (1996), 2869.  doi: 10.1088/0305-4470/29/11/021.  Google Scholar

[31]

E. Nelson, Derivation of the Schrödinger equation from Newtonian Mechanics,, Phys. Rev., 150 (1966), 1079.  doi: 10.1103/PhysRev.150.1079.  Google Scholar

[32]

C. Sabatier, Multidimensional nonlinear Schrödinger equations with exponentially confined solutions,, Inverse Problems, 6 (1990).  doi: 10.1088/0266-5611/6/5/002.  Google Scholar

[33]

A. Scarfone, Gauge equivalence among quantum nonlinear many body systems,, Act. Appl. Math., 102 (2008), 179.  doi: 10.1007/s10440-008-9213-7.  Google Scholar

[34]

A. G. Ushveridze, Dissipative quantum mechanics. A special Doebner-Goldin equation, its properties and exact solutions,, Phys. Lett. A, 185 (1994), 123.  doi: 10.1016/0375-9601(94)90834-6.  Google Scholar

[35]

A. G. Ushveridze, The special Doebner-Goldin equation as a fundamental equation of dissipative quantum mechanics,, Phys. Lett. A, 185 (1994), 128.  doi: 10.1016/0375-9601(94)90835-4.  Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[4]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[5]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[10]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[11]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[12]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[13]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[14]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[17]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[20]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]