• Previous Article
    A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules
  • KRM Home
  • This Issue
  • Next Article
    On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models
September  2012, 5(3): 537-550. doi: 10.3934/krm.2012.5.537

Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain

1. 

Department of Mathematics, Champlain College Saint-Lambert, Quebec, J4P 3P2, Canada

2. 

Department of Pure and Applied Mathematics,University of L'Aquila, 67010 Coppito, L'Aquila, Italy, Italy

Received  March 2012 Revised  May 2012 Published  August 2012

In this paper we present a physically relevant hydrodynamic model for a bipolar semiconductor device considering Ohmic conductor boundary conditions and a non-flat doping profile. For such an Euler-Poisson system, we prove, by means of a technical energy method, that the solutions are unique, exist globally and asymptotically converge to the corresponding stationary solutions. An exponential decay rate is also derived. Moreover we allow that the two pressure functions can be different.
Citation: Ming Mei, Bruno Rubino, Rosella Sampalmieri. Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinetic & Related Models, 2012, 5 (3) : 537-550. doi: 10.3934/krm.2012.5.537
References:
[1]

G. Ali, Global existence of smooth solutions of the N-dimensional Euler-Possion model,, SIAM J. Math. Anal., 35 (2003), 389.  doi: 10.1137/S0036141001393225.  Google Scholar

[2]

G. Ali, D. Bini and D. Rionero, Global existence and relaxation limit for smooth solutions to the Euler-Possion model for semiconductors,, SIAM J. Math. Anal., 32 (2000), 572.  doi: 10.1137/S0036141099355174.  Google Scholar

[3]

K. Blφtekjær, Transport equations for electrons in two-valley semiconductors,, IEEE Trans. Electron Devices, 17 (1970), 38.   Google Scholar

[4]

G. Chen, J. Jerome and B. Zhang, Particle hydrodynamic moment models in biology and microelectronics: Singular relaxation limits,, Nonlinear Anal., 30 (1997), 233.  doi: 10.1016/S0362-546X(96)00198-8.  Google Scholar

[5]

G. Chen and D. Wang, Convergence of shock capturing schemes for the compressible Euler-Poisson equations,, Comm. Math. Phys., 179 (1996), 333.  doi: 10.1007/BF02102592.  Google Scholar

[6]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model,, Appl. Math. Lett., 3 (1990), 25.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[7]

W. Fang and K. Ito, Steady-state solutions of a one-dimensional hydrodynamic model for semiconductors,, J. Differential Equations, 133 (1997), 224.  doi: 10.1006/jdeq.1996.3203.  Google Scholar

[8]

I. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor,, Comm. Partial Diff. Eqns, 17 (1992), 553.  doi: 10.1080/03605309208820853.  Google Scholar

[9]

I. Gasser, L. Hsiao and H.-L. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors,, J. Differential Equations, 192 (2003), 326.  doi: 10.1016/S0022-0396(03)00122-0.  Google Scholar

[10]

I. Gasser and R. Natalini, The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors,, Quart. Appl. Math., 57 (1996), 269.  doi: 10.1.1.53.9991.  Google Scholar

[11]

Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions,, Arch. Rational Mech. Anal., 179 (2005), 1.  doi: 10.1007/s00205-005-0369-2.  Google Scholar

[12]

L. Hsiao and K. Zhang, The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors,, Math. Models Methods Appl. Sci., 10 (2000), 1333.  doi: 10.1142/S0218202500000653.  Google Scholar

[13]

L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to drift diffusion equations,, J. Differential Equations, 165 (2000), 315.  doi: 10.1006/jdeq.2000.3780.  Google Scholar

[14]

F.-M. Huang and Y.-P. Li, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum,, Discrete Contin. Dyn. Syst., 24 (2009), 455.  doi: 10.3934/dcds.2009.24.455.  Google Scholar

[15]

F.-M. Huang, M. Mei and Y. Wang, Large time behavior of solutions to $n$-dimensional bipolar hydrodynamic model for semiconductors,, SIAM J. Math. Anal., 43 (2011), 1595.  doi: 10.1137/100810228.  Google Scholar

[16]

F.-M. Huang, M. Mei, Y. Wang and T. Yang, Long-time behavior of solutions for bipolar hydrodynamic model of semiconductors with boundary effects,, SIAM J. Math. Anal., 44 (2012), 1134.  doi: 10.1137/110831647.  Google Scholar

[17]

F.-M. Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynami model of semiconductors,, SIAM J. Math. Anal., 43 (2011), 411.  doi: 10.1137/100793025.  Google Scholar

[18]

F.-M. Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors,, J. Differential Equations, 251 (2011), 1305.  doi: 10.1016/j.jde.2011.04.007.  Google Scholar

[19]

J. W. Jerome, Steady Euler-Poisson system: a differential/integral equation formulation with general constitutive relations,, Nonlinear Anal., 71 (2009).  doi: 10.1016/j.na.2009.04.042.  Google Scholar

[20]

A. Jüngel, "Quasi-hydrodynamic Semiconductor Equations,", Progress in Nonlinear Differential Equations and their Applications, (2001).   Google Scholar

[21]

H.-L. Li, P. Markowich and M. Mei, Asymptotic behavior of solutions of the hydrodynamic model of semiconductors,, Proc. Royal Soc. Edinburgh, 132 (2002), 359.  doi: 10.1017/S0308210500001670.  Google Scholar

[22]

H.-L. Li, P. Markowich and M. Mei, Asymptotic behavior of subsonic entropy solutions of the isentropic Euler-Poisson equations,, Quart. Appl. Math., 60 (2002), 773.   Google Scholar

[23]

C.-K. Lin, C.-T. Lin and M. Mei, Asymptotic behavior of solution to nonlinear damped p-system with boundary effect,, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 70.   Google Scholar

[24]

T. Luo, R. Natalini and Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors,, SIAM J. Appl. Math., 59 (1998), 810.  doi: 10.1.1.55.4600.  Google Scholar

[25]

P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping,, J. Math. Fluid Mech. 7 (2005), 7 (2005).  doi: 10.1007/s00021-005-0155-9.  Google Scholar

[26]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation,, Arch. Rational Mech. Anal., 129 (1995), 129.  doi: 10.1007/BF00379918.  Google Scholar

[27]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990).   Google Scholar

[28]

M. Mei, Best asymptotic profile for hyperbolic $p$-sytem with damping,, SIAM J. Math. Anal., 42 (2010), 1.  doi: 10.1137/090756594.  Google Scholar

[29]

M. Mei and Y. Wang, Stability of stationary waves for full Euler-Poisson system in multi-dimensional space,, Commun. Pure Appl. Anal., 11 (2012), 1775.  doi: 10.3934/cpaa.2012.11.1775.  Google Scholar

[30]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations,, J. Math. Anal. Appl., 198 (1996), 262.  doi: 10.1006/jmaa.1996.0081.  Google Scholar

[31]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors,, Osaka J. Math., 44 (2007), 639.  doi: 10.1007/BF01210792.  Google Scholar

[32]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors,, Arch. Rational Mech. Anal., 192 (2009), 187.  doi: 10.1007/s00205-008-0129-1.  Google Scholar

[33]

F. Poupaud, M. Rascle and J.-P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data,, J. Differential Equations, 123 (1995), 93.  doi: 10.1006/jdeq.1995.1158.  Google Scholar

[34]

A. Sitenko and V. Malnev, "Plasma Physics Theory,", Applied Mathematics and Mathematical Computation, (1995).   Google Scholar

[35]

N. Tsuge, Existence and uniqueness of stationary solutions to one-dimensional bipolar hydrodynamic model of semiconductors,, Nonlinear Analysis, 73 (2010), 779.  doi: 10.1016/j.na.2010.04.015.  Google Scholar

[36]

B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices,, Comm. Math. Phys., 157 (1993), 1.  doi: 10.1007/BF02098016.  Google Scholar

[37]

C. Zhu and H. Hattori, Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species,, J. Differential Equations, 166 (2000), 1.  doi: 10.1006/jdeq.2000.3799.  Google Scholar

[38]

C. Zhu and H. Hattori, Asymptotic behavior of the solution to a nonisentropic hydrodynamic model of semiconductors,, J. Differential Equations, 144 (1998), 353.  doi: 10.1006/jdeq.1997.3381.  Google Scholar

show all references

References:
[1]

G. Ali, Global existence of smooth solutions of the N-dimensional Euler-Possion model,, SIAM J. Math. Anal., 35 (2003), 389.  doi: 10.1137/S0036141001393225.  Google Scholar

[2]

G. Ali, D. Bini and D. Rionero, Global existence and relaxation limit for smooth solutions to the Euler-Possion model for semiconductors,, SIAM J. Math. Anal., 32 (2000), 572.  doi: 10.1137/S0036141099355174.  Google Scholar

[3]

K. Blφtekjær, Transport equations for electrons in two-valley semiconductors,, IEEE Trans. Electron Devices, 17 (1970), 38.   Google Scholar

[4]

G. Chen, J. Jerome and B. Zhang, Particle hydrodynamic moment models in biology and microelectronics: Singular relaxation limits,, Nonlinear Anal., 30 (1997), 233.  doi: 10.1016/S0362-546X(96)00198-8.  Google Scholar

[5]

G. Chen and D. Wang, Convergence of shock capturing schemes for the compressible Euler-Poisson equations,, Comm. Math. Phys., 179 (1996), 333.  doi: 10.1007/BF02102592.  Google Scholar

[6]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model,, Appl. Math. Lett., 3 (1990), 25.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[7]

W. Fang and K. Ito, Steady-state solutions of a one-dimensional hydrodynamic model for semiconductors,, J. Differential Equations, 133 (1997), 224.  doi: 10.1006/jdeq.1996.3203.  Google Scholar

[8]

I. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor,, Comm. Partial Diff. Eqns, 17 (1992), 553.  doi: 10.1080/03605309208820853.  Google Scholar

[9]

I. Gasser, L. Hsiao and H.-L. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors,, J. Differential Equations, 192 (2003), 326.  doi: 10.1016/S0022-0396(03)00122-0.  Google Scholar

[10]

I. Gasser and R. Natalini, The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors,, Quart. Appl. Math., 57 (1996), 269.  doi: 10.1.1.53.9991.  Google Scholar

[11]

Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions,, Arch. Rational Mech. Anal., 179 (2005), 1.  doi: 10.1007/s00205-005-0369-2.  Google Scholar

[12]

L. Hsiao and K. Zhang, The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors,, Math. Models Methods Appl. Sci., 10 (2000), 1333.  doi: 10.1142/S0218202500000653.  Google Scholar

[13]

L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to drift diffusion equations,, J. Differential Equations, 165 (2000), 315.  doi: 10.1006/jdeq.2000.3780.  Google Scholar

[14]

F.-M. Huang and Y.-P. Li, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum,, Discrete Contin. Dyn. Syst., 24 (2009), 455.  doi: 10.3934/dcds.2009.24.455.  Google Scholar

[15]

F.-M. Huang, M. Mei and Y. Wang, Large time behavior of solutions to $n$-dimensional bipolar hydrodynamic model for semiconductors,, SIAM J. Math. Anal., 43 (2011), 1595.  doi: 10.1137/100810228.  Google Scholar

[16]

F.-M. Huang, M. Mei, Y. Wang and T. Yang, Long-time behavior of solutions for bipolar hydrodynamic model of semiconductors with boundary effects,, SIAM J. Math. Anal., 44 (2012), 1134.  doi: 10.1137/110831647.  Google Scholar

[17]

F.-M. Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynami model of semiconductors,, SIAM J. Math. Anal., 43 (2011), 411.  doi: 10.1137/100793025.  Google Scholar

[18]

F.-M. Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors,, J. Differential Equations, 251 (2011), 1305.  doi: 10.1016/j.jde.2011.04.007.  Google Scholar

[19]

J. W. Jerome, Steady Euler-Poisson system: a differential/integral equation formulation with general constitutive relations,, Nonlinear Anal., 71 (2009).  doi: 10.1016/j.na.2009.04.042.  Google Scholar

[20]

A. Jüngel, "Quasi-hydrodynamic Semiconductor Equations,", Progress in Nonlinear Differential Equations and their Applications, (2001).   Google Scholar

[21]

H.-L. Li, P. Markowich and M. Mei, Asymptotic behavior of solutions of the hydrodynamic model of semiconductors,, Proc. Royal Soc. Edinburgh, 132 (2002), 359.  doi: 10.1017/S0308210500001670.  Google Scholar

[22]

H.-L. Li, P. Markowich and M. Mei, Asymptotic behavior of subsonic entropy solutions of the isentropic Euler-Poisson equations,, Quart. Appl. Math., 60 (2002), 773.   Google Scholar

[23]

C.-K. Lin, C.-T. Lin and M. Mei, Asymptotic behavior of solution to nonlinear damped p-system with boundary effect,, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 70.   Google Scholar

[24]

T. Luo, R. Natalini and Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors,, SIAM J. Appl. Math., 59 (1998), 810.  doi: 10.1.1.55.4600.  Google Scholar

[25]

P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping,, J. Math. Fluid Mech. 7 (2005), 7 (2005).  doi: 10.1007/s00021-005-0155-9.  Google Scholar

[26]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation,, Arch. Rational Mech. Anal., 129 (1995), 129.  doi: 10.1007/BF00379918.  Google Scholar

[27]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990).   Google Scholar

[28]

M. Mei, Best asymptotic profile for hyperbolic $p$-sytem with damping,, SIAM J. Math. Anal., 42 (2010), 1.  doi: 10.1137/090756594.  Google Scholar

[29]

M. Mei and Y. Wang, Stability of stationary waves for full Euler-Poisson system in multi-dimensional space,, Commun. Pure Appl. Anal., 11 (2012), 1775.  doi: 10.3934/cpaa.2012.11.1775.  Google Scholar

[30]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations,, J. Math. Anal. Appl., 198 (1996), 262.  doi: 10.1006/jmaa.1996.0081.  Google Scholar

[31]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors,, Osaka J. Math., 44 (2007), 639.  doi: 10.1007/BF01210792.  Google Scholar

[32]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors,, Arch. Rational Mech. Anal., 192 (2009), 187.  doi: 10.1007/s00205-008-0129-1.  Google Scholar

[33]

F. Poupaud, M. Rascle and J.-P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data,, J. Differential Equations, 123 (1995), 93.  doi: 10.1006/jdeq.1995.1158.  Google Scholar

[34]

A. Sitenko and V. Malnev, "Plasma Physics Theory,", Applied Mathematics and Mathematical Computation, (1995).   Google Scholar

[35]

N. Tsuge, Existence and uniqueness of stationary solutions to one-dimensional bipolar hydrodynamic model of semiconductors,, Nonlinear Analysis, 73 (2010), 779.  doi: 10.1016/j.na.2010.04.015.  Google Scholar

[36]

B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices,, Comm. Math. Phys., 157 (1993), 1.  doi: 10.1007/BF02098016.  Google Scholar

[37]

C. Zhu and H. Hattori, Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species,, J. Differential Equations, 166 (2000), 1.  doi: 10.1006/jdeq.2000.3799.  Google Scholar

[38]

C. Zhu and H. Hattori, Asymptotic behavior of the solution to a nonisentropic hydrodynamic model of semiconductors,, J. Differential Equations, 144 (1998), 353.  doi: 10.1006/jdeq.1997.3381.  Google Scholar

[1]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[2]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[3]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[4]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[5]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[6]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[9]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[10]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[11]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[12]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[15]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[19]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[20]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]