
Previous Article
Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain
 KRM Home
 This Issue

Next Article
Convergence rates of zero diffusion limit on large amplitude solution to a conservation laws arising in chemotaxis
A remark on CannoneKarch solutions to the homogeneous Boltzmann equation for Maxwellian molecules
1.  Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 6068501, Japan 
References:
[1] 
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and longrange interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. 
[2] 
R. Alexandre and M. El Safadi, LittlewoodPaley theory and regularity issues in Boltzmann homogeneous equations. I. Noncutoff and Maxwellian molecules,, Math. Models Methods Appl. Sci., 15 (2005), 907. 
[3] 
R. Alexandre, Y. Morimoto, S. Ukai, C.J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff,, Kyoto J. Math., 52 (2012), 433. 
[4] 
M. Cannone and G. Karch, Infinite energy solutions to the homogeneous Boltzmann equation,, Comm. Pure Appl. Math., 63 (2010), 747. doi: 10.1002/cpa.20298. 
[5] 
Z. H. Huo, Y. Morimoto, S. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff,, Kinetic and Related Models, 1 (2008), 453. 
[6] 
N. Jacob, "PseudoDifferential Operators and Markov Process. Vol. 1. Fourier Analysis and Semigroups,", Imperial College Press, (2001). 
[7] 
Y. Morimoto, S. Ukai, C.J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete and Continuous Dynamical Systems, 24 (2009), 187. 
[8] 
H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,, Wahrsch. Verw. Geb., 46 (): 67. doi: 10.1007/BF00535689. 
[9] 
G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equations for Maxwell gas,, J. Statist. Phys., 94 (1999), 619. 
[10] 
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. 
[11] 
C. Villani, "A Review of Mathematical Topics in Collisional Kinetic Theory,", in, (2002), 71. 
[12] 
C. Villani, private communication,, Kyoto, (2008). 
[13] 
Y. Morimoto and T. Yang, Villani conjecture on smoothing effect of the homogeneous Boltzmann equation with measure initial datum,, preprint., (). 
show all references
References:
[1] 
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and longrange interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. 
[2] 
R. Alexandre and M. El Safadi, LittlewoodPaley theory and regularity issues in Boltzmann homogeneous equations. I. Noncutoff and Maxwellian molecules,, Math. Models Methods Appl. Sci., 15 (2005), 907. 
[3] 
R. Alexandre, Y. Morimoto, S. Ukai, C.J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff,, Kyoto J. Math., 52 (2012), 433. 
[4] 
M. Cannone and G. Karch, Infinite energy solutions to the homogeneous Boltzmann equation,, Comm. Pure Appl. Math., 63 (2010), 747. doi: 10.1002/cpa.20298. 
[5] 
Z. H. Huo, Y. Morimoto, S. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff,, Kinetic and Related Models, 1 (2008), 453. 
[6] 
N. Jacob, "PseudoDifferential Operators and Markov Process. Vol. 1. Fourier Analysis and Semigroups,", Imperial College Press, (2001). 
[7] 
Y. Morimoto, S. Ukai, C.J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete and Continuous Dynamical Systems, 24 (2009), 187. 
[8] 
H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,, Wahrsch. Verw. Geb., 46 (): 67. doi: 10.1007/BF00535689. 
[9] 
G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equations for Maxwell gas,, J. Statist. Phys., 94 (1999), 619. 
[10] 
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. 
[11] 
C. Villani, "A Review of Mathematical Topics in Collisional Kinetic Theory,", in, (2002), 71. 
[12] 
C. Villani, private communication,, Kyoto, (2008). 
[13] 
Y. Morimoto and T. Yang, Villani conjecture on smoothing effect of the homogeneous Boltzmann equation with measure initial datum,, preprint., (). 
[1] 
JeanMarie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the noncutoff homogeneous Boltzmann equation for Maxwellian molecules with DebyeYukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901924. doi: 10.3934/krm.2017036 
[2] 
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, ChaoJiang Xu, Tong Yang. Uniqueness of solutions for the noncutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919934. doi: 10.3934/krm.2011.4.919 
[3] 
Léo Glangetas, HaoGuang Li, ChaoJiang Xu. Sharp regularity properties for the noncutoff spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2016, 9 (2) : 299371. doi: 10.3934/krm.2016.9.299 
[4] 
Radjesvarane Alexandre, Mouhamad Elsafadi. LittlewoodPaley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems  A, 2009, 24 (1) : 111. doi: 10.3934/dcds.2009.24.1 
[5] 
Alexander V. Bobylev, Irene M. Gamba. Upper Maxwellian bounds for the Boltzmann equation with pseudoMaxwell molecules. Kinetic & Related Models, 2017, 10 (3) : 573585. doi: 10.3934/krm.2017023 
[6] 
Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic VlasovMaxwellBoltzmann system for angular noncutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159204. doi: 10.3934/krm.2013.6.159 
[7] 
Nadia Lekrine, ChaoJiang Xu. Gevrey regularizing effect of the Cauchy problem for noncutoff homogeneous Kac's equation. Kinetic & Related Models, 2009, 2 (4) : 647666. doi: 10.3934/krm.2009.2.647 
[8] 
Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic & Related Models, 2016, 9 (1) : 149. doi: 10.3934/krm.2016.9.1 
[9] 
Xinkuan Chai. The Boltzmann equation near Maxwellian in the whole space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 435458. doi: 10.3934/cpaa.2011.10.435 
[10] 
Milana PavićČolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic & Related Models, 2018, 11 (3) : 597613. doi: 10.3934/krm.2018025 
[11] 
Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453489. doi: 10.3934/krm.2008.1.453 
[12] 
Yoshinori Morimoto, Seiji Ukai, ChaoJiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems  A, 2009, 24 (1) : 187212. doi: 10.3934/dcds.2009.24.187 
[13] 
Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547596. doi: 10.3934/krm.2018024 
[14] 
Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic & Related Models, 2015, 8 (2) : 281308. doi: 10.3934/krm.2015.8.281 
[15] 
Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483505. doi: 10.3934/krm.2019020 
[16] 
Zhiming Guo, ZhiChun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a nonlocal differential equation with homogeneous Dirichlet boundary conditionA nonmonotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 18251838. doi: 10.3934/cpaa.2012.11.1825 
[17] 
Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic & Related Models, 2014, 7 (3) : 433461. doi: 10.3934/krm.2014.7.433 
[18] 
C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic & Related Models, 2010, 3 (2) : 335351. doi: 10.3934/krm.2010.3.335 
[19] 
Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems  A, 2013, 33 (10) : 46134626. doi: 10.3934/dcds.2013.33.4613 
[20] 
Tomás Caraballo, Marta HerreraCobos, Pedro MarínRubio. Global attractor for a nonlocal pLaplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems  B, 2017, 22 (5) : 18011816. doi: 10.3934/dcdsb.2017107 
2018 Impact Factor: 1.38
Tools
Metrics
Other articles
by authors
[Back to Top]