• Previous Article
    Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$
  • KRM Home
  • This Issue
  • Next Article
    Convergence rates of zero diffusion limit on large amplitude solution to a conservation laws arising in chemotaxis
September  2012, 5(3): 583-613. doi: 10.3934/krm.2012.5.583

Optimal time decay of the non cut-off Boltzmann equation in the whole space

1. 

University of Pennsylvania, Department of Mathematics, David Rittenhouse Lab, 209 South 33rd Street, Philadelphia, PA 19104, United States

Received  March 2012 Revised  April 2012 Published  August 2012

In this paper we study the large-time behavior of perturbative classical solutions to the hard and soft potential Boltzmann equation without the angular cut-off assumption in the whole space $\mathbb{R}^n _x$ with $n≥3$ .We use the existence theory of global in time nearby Maxwellian solutions from [12,11].It has been a longstanding open problem to determine the large time decay rates for the soft potential Boltzmann equation in the whole space, with or without the angular cut-off assumption [26,1]. For perturbative initial data, we prove that solutions converge to the global Maxwellian with the optimal large-time decay rate of $O(t^{-\frac{N}{2}+\frac{N}{2r}})$ in the $L^2_v$$(L^r_x)$-norm for any $2\leq r\leq \infty$.
Citation: Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic and Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583
References:
[1]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661. doi: 10.1007/s00205-011-0432-0.

[2]

Russel E. Caflisch, The Boltzmann equation with a soft potential. I, II, Comm. Math. Phys., 74 (1980), 71-95, 97-109. doi: 10.1007/BF01197579.

[3]

Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions: Spatially inhomogeneous case, Arch. Ration. Mech. Anal., 203 (2012), 343-377. doi: 10.1007/s00205-011-0482-3.

[4]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.

[5]

R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24 (2011), 2165-2189. doi: 10.1088/0951-7715/24/8/003.

[6]

R. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_\varepsilon$($H^N_x$), J. Differential Equations, 244 (2008), 3204-3234. doi: 10.1016/j.jde.2007.11.006.

[7]

R. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$, Arch. Rational Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[8]

R. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Pure Appl. Math., 64 (2011), 1497-1546.

[9]

R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236. doi: 10.1007/s00220-007-0366-4.

[10]

R. T. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

[11]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847. doi: 10.1090/S0894-0347-2011-00697-8.

[12]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions, Proc. Nat. Acad. Sci. U. S. A., 107 (2010), 5744-5749. doi: 10.1073/pnas.1001185107.

[13]

P. T. Gressman and R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Advances in Math., 227 (2011), 2349-2384. doi: 10.1016/j.aim.2011.05.005.

[14]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434. doi: 10.1007/s00220-002-0729-9.

[15]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630. doi: 10.1007/s00222-003-0301-z.

[16]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094. doi: 10.1512/iumj.2004.53.2574.

[17]

Shuichi Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.

[18]

C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9), 87 (2007), 515-535.

[19]

R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Math. Phys., 268 (2006), 543-567. doi: 10.1007/s00220-006-0109-y.

[20]

Robert M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft-potentials, Comm. Math. Phys., 300 (2010), 529-597. doi: 10.1007/s00220-010-1129-1.

[21]

Robert M. Strain and Yan Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006), 417-429. doi: 10.1080/03605300500361545.

[22]

Robert M. Strain and Yan Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339. doi: 10.1007/s00205-007-0067-3.

[23]

R. M. Strain and K. Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $mathbbR^3_x$, Kinetic and Related Models, 5 (2012), 383-415.

[24]

M. E. Taylor, "Partial Differential Equations. III. Nonlinear Equations," Applied Mathematical Sciences, 117, Springer-Verlag, New York, 1997.

[25]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184. doi: 10.3792/pja/1195519027.

[26]

Seiji Ukai and Kiyoshi Asano, On the Cauchy problem of the Boltzmann equation with a soft potential, Publ. Res. Inst. Math. Sci., 18 (1982), 477-519 (57-99). doi: 10.2977/prims/1195183569.

[27]

C. Villani, A review of mathematical topics in collisional kinetic theory, in "Handbook of Mathematical Fluid Dynamics," Vol. I, North-Holland, Amsterdam, (2002), 71-305.

[28]

C. Villani, "Hypocoercivity," Mem. Amer. Math. Soc., 202 (2009), iv+141.

show all references

References:
[1]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661. doi: 10.1007/s00205-011-0432-0.

[2]

Russel E. Caflisch, The Boltzmann equation with a soft potential. I, II, Comm. Math. Phys., 74 (1980), 71-95, 97-109. doi: 10.1007/BF01197579.

[3]

Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions: Spatially inhomogeneous case, Arch. Ration. Mech. Anal., 203 (2012), 343-377. doi: 10.1007/s00205-011-0482-3.

[4]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.

[5]

R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24 (2011), 2165-2189. doi: 10.1088/0951-7715/24/8/003.

[6]

R. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_\varepsilon$($H^N_x$), J. Differential Equations, 244 (2008), 3204-3234. doi: 10.1016/j.jde.2007.11.006.

[7]

R. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$, Arch. Rational Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[8]

R. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Pure Appl. Math., 64 (2011), 1497-1546.

[9]

R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236. doi: 10.1007/s00220-007-0366-4.

[10]

R. T. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

[11]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847. doi: 10.1090/S0894-0347-2011-00697-8.

[12]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions, Proc. Nat. Acad. Sci. U. S. A., 107 (2010), 5744-5749. doi: 10.1073/pnas.1001185107.

[13]

P. T. Gressman and R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Advances in Math., 227 (2011), 2349-2384. doi: 10.1016/j.aim.2011.05.005.

[14]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434. doi: 10.1007/s00220-002-0729-9.

[15]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630. doi: 10.1007/s00222-003-0301-z.

[16]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094. doi: 10.1512/iumj.2004.53.2574.

[17]

Shuichi Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.

[18]

C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9), 87 (2007), 515-535.

[19]

R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Math. Phys., 268 (2006), 543-567. doi: 10.1007/s00220-006-0109-y.

[20]

Robert M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft-potentials, Comm. Math. Phys., 300 (2010), 529-597. doi: 10.1007/s00220-010-1129-1.

[21]

Robert M. Strain and Yan Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006), 417-429. doi: 10.1080/03605300500361545.

[22]

Robert M. Strain and Yan Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339. doi: 10.1007/s00205-007-0067-3.

[23]

R. M. Strain and K. Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $mathbbR^3_x$, Kinetic and Related Models, 5 (2012), 383-415.

[24]

M. E. Taylor, "Partial Differential Equations. III. Nonlinear Equations," Applied Mathematical Sciences, 117, Springer-Verlag, New York, 1997.

[25]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184. doi: 10.3792/pja/1195519027.

[26]

Seiji Ukai and Kiyoshi Asano, On the Cauchy problem of the Boltzmann equation with a soft potential, Publ. Res. Inst. Math. Sci., 18 (1982), 477-519 (57-99). doi: 10.2977/prims/1195183569.

[27]

C. Villani, A review of mathematical topics in collisional kinetic theory, in "Handbook of Mathematical Fluid Dynamics," Vol. I, North-Holland, Amsterdam, (2002), 71-305.

[28]

C. Villani, "Hypocoercivity," Mem. Amer. Math. Soc., 202 (2009), iv+141.

[1]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

[2]

Ricardo Weder, Dimitri Yafaev. Inverse scattering at a fixed energy for long-range potentials. Inverse Problems and Imaging, 2007, 1 (1) : 217-224. doi: 10.3934/ipi.2007.1.217

[3]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic and Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[4]

Fei Meng, Fang Liu. On the inelastic Boltzmann equation for soft potentials with diffusion. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5197-5217. doi: 10.3934/cpaa.2020233

[5]

Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174

[6]

Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235

[7]

Wei-Xi Li, Lvqiao Liu. Gelfand-Shilov smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Kinetic and Related Models, 2020, 13 (5) : 1029-1046. doi: 10.3934/krm.2020036

[8]

Zheng-an Yao, Yu-Long Zhou. High order approximation for the Boltzmann equation without angular cutoff under moderately soft potentials. Kinetic and Related Models, 2020, 13 (3) : 435-478. doi: 10.3934/krm.2020015

[9]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[10]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[11]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic and Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[12]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic and Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[13]

Yong-Kum Cho, Hera Yun. On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials. Kinetic and Related Models, 2012, 5 (4) : 769-786. doi: 10.3934/krm.2012.5.769

[14]

Juan Kalemkerian, Andrés Sosa. Long-range dependence in the volatility of returns in Uruguayan sovereign debt indices. Journal of Dynamics and Games, 2020, 7 (3) : 225-237. doi: 10.3934/jdg.2020016

[15]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic and Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261

[17]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic and Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

[18]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[19]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

[20]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (127)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]