• Previous Article
    Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$
  • KRM Home
  • This Issue
  • Next Article
    Convergence rates of zero diffusion limit on large amplitude solution to a conservation laws arising in chemotaxis
September  2012, 5(3): 583-613. doi: 10.3934/krm.2012.5.583

Optimal time decay of the non cut-off Boltzmann equation in the whole space

1. 

University of Pennsylvania, Department of Mathematics, David Rittenhouse Lab, 209 South 33rd Street, Philadelphia, PA 19104, United States

Received  March 2012 Revised  April 2012 Published  August 2012

In this paper we study the large-time behavior of perturbative classical solutions to the hard and soft potential Boltzmann equation without the angular cut-off assumption in the whole space $\mathbb{R}^n _x$ with $n≥3$ .We use the existence theory of global in time nearby Maxwellian solutions from [12,11].It has been a longstanding open problem to determine the large time decay rates for the soft potential Boltzmann equation in the whole space, with or without the angular cut-off assumption [26,1]. For perturbative initial data, we prove that solutions converge to the global Maxwellian with the optimal large-time decay rate of $O(t^{-\frac{N}{2}+\frac{N}{2r}})$ in the $L^2_v$$(L^r_x)$-norm for any $2\leq r\leq \infty$.
Citation: Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583
References:
[1]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599.  doi: 10.1007/s00205-011-0432-0.  Google Scholar

[2]

Russel E. Caflisch, The Boltzmann equation with a soft potential. I, II,, Comm. Math. Phys., 74 (1980), 71.  doi: 10.1007/BF01197579.  Google Scholar

[3]

Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions: Spatially inhomogeneous case,, Arch. Ration. Mech. Anal., 203 (2012), 343.  doi: 10.1007/s00205-011-0482-3.  Google Scholar

[4]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation,, Invent. Math., 159 (2005), 245.  doi: 10.1007/s00222-004-0389-9.  Google Scholar

[5]

R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations,, Nonlinearity, 24 (2011), 2165.  doi: 10.1088/0951-7715/24/8/003.  Google Scholar

[6]

R. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_\varepsilon$($H^N_x$),, J. Differential Equations, 244 (2008), 3204.  doi: 10.1016/j.jde.2007.11.006.  Google Scholar

[7]

R. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$,, Arch. Rational Mech. Anal., 199 (2011), 291.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[8]

R. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Pure Appl. Math., 64 (2011), 1497.   Google Scholar

[9]

R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications,, Comm. Math. Phys., 277 (2008), 189.  doi: 10.1007/s00220-007-0366-4.  Google Scholar

[10]

R. T. Glassey, "The Cauchy Problem in Kinetic Theory,", Society for Industrial and Applied Mathematics (SIAM), (1996).   Google Scholar

[11]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off,, J. Amer. Math. Soc., 24 (2011), 771.  doi: 10.1090/S0894-0347-2011-00697-8.  Google Scholar

[12]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions,, Proc. Nat. Acad. Sci. U. S. A., 107 (2010), 5744.  doi: 10.1073/pnas.1001185107.  Google Scholar

[13]

P. T. Gressman and R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production,, Advances in Math., 227 (2011), 2349.  doi: 10.1016/j.aim.2011.05.005.  Google Scholar

[14]

Y. Guo, The Landau equation in a periodic box,, Comm. Math. Phys., 231 (2002), 391.  doi: 10.1007/s00220-002-0729-9.  Google Scholar

[15]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians,, Invent. Math., 153 (2003), 593.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[16]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Math. J., 53 (2004), 1081.  doi: 10.1512/iumj.2004.53.2574.  Google Scholar

[17]

Shuichi Kawashima, The Boltzmann equation and thirteen moments,, Japan J. Appl. Math., 7 (1990), 301.   Google Scholar

[18]

C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff,, J. Math. Pures Appl. (9), 87 (2007), 515.   Google Scholar

[19]

R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Math. Phys., 268 (2006), 543.  doi: 10.1007/s00220-006-0109-y.  Google Scholar

[20]

Robert M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft-potentials,, Comm. Math. Phys., 300 (2010), 529.  doi: 10.1007/s00220-010-1129-1.  Google Scholar

[21]

Robert M. Strain and Yan Guo, Almost exponential decay near Maxwellian,, Comm. Partial Differential Equations, 31 (2006), 417.  doi: 10.1080/03605300500361545.  Google Scholar

[22]

Robert M. Strain and Yan Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287.  doi: 10.1007/s00205-007-0067-3.  Google Scholar

[23]

R. M. Strain and K. Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $mathbbR^3_x$,, Kinetic and Related Models, 5 (2012), 383.   Google Scholar

[24]

M. E. Taylor, "Partial Differential Equations. III. Nonlinear Equations,", Applied Mathematical Sciences, 117 (1997).   Google Scholar

[25]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179.  doi: 10.3792/pja/1195519027.  Google Scholar

[26]

Seiji Ukai and Kiyoshi Asano, On the Cauchy problem of the Boltzmann equation with a soft potential,, Publ. Res. Inst. Math. Sci., 18 (1982), 477.  doi: 10.2977/prims/1195183569.  Google Scholar

[27]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71.   Google Scholar

[28]

C. Villani, "Hypocoercivity,", Mem. Amer. Math. Soc., 202 (2009).   Google Scholar

show all references

References:
[1]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599.  doi: 10.1007/s00205-011-0432-0.  Google Scholar

[2]

Russel E. Caflisch, The Boltzmann equation with a soft potential. I, II,, Comm. Math. Phys., 74 (1980), 71.  doi: 10.1007/BF01197579.  Google Scholar

[3]

Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions: Spatially inhomogeneous case,, Arch. Ration. Mech. Anal., 203 (2012), 343.  doi: 10.1007/s00205-011-0482-3.  Google Scholar

[4]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation,, Invent. Math., 159 (2005), 245.  doi: 10.1007/s00222-004-0389-9.  Google Scholar

[5]

R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations,, Nonlinearity, 24 (2011), 2165.  doi: 10.1088/0951-7715/24/8/003.  Google Scholar

[6]

R. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_\varepsilon$($H^N_x$),, J. Differential Equations, 244 (2008), 3204.  doi: 10.1016/j.jde.2007.11.006.  Google Scholar

[7]

R. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$,, Arch. Rational Mech. Anal., 199 (2011), 291.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[8]

R. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Pure Appl. Math., 64 (2011), 1497.   Google Scholar

[9]

R. Duan, S. Ukai, T. Yang and H. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications,, Comm. Math. Phys., 277 (2008), 189.  doi: 10.1007/s00220-007-0366-4.  Google Scholar

[10]

R. T. Glassey, "The Cauchy Problem in Kinetic Theory,", Society for Industrial and Applied Mathematics (SIAM), (1996).   Google Scholar

[11]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off,, J. Amer. Math. Soc., 24 (2011), 771.  doi: 10.1090/S0894-0347-2011-00697-8.  Google Scholar

[12]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions,, Proc. Nat. Acad. Sci. U. S. A., 107 (2010), 5744.  doi: 10.1073/pnas.1001185107.  Google Scholar

[13]

P. T. Gressman and R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production,, Advances in Math., 227 (2011), 2349.  doi: 10.1016/j.aim.2011.05.005.  Google Scholar

[14]

Y. Guo, The Landau equation in a periodic box,, Comm. Math. Phys., 231 (2002), 391.  doi: 10.1007/s00220-002-0729-9.  Google Scholar

[15]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians,, Invent. Math., 153 (2003), 593.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[16]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Math. J., 53 (2004), 1081.  doi: 10.1512/iumj.2004.53.2574.  Google Scholar

[17]

Shuichi Kawashima, The Boltzmann equation and thirteen moments,, Japan J. Appl. Math., 7 (1990), 301.   Google Scholar

[18]

C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff,, J. Math. Pures Appl. (9), 87 (2007), 515.   Google Scholar

[19]

R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Math. Phys., 268 (2006), 543.  doi: 10.1007/s00220-006-0109-y.  Google Scholar

[20]

Robert M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft-potentials,, Comm. Math. Phys., 300 (2010), 529.  doi: 10.1007/s00220-010-1129-1.  Google Scholar

[21]

Robert M. Strain and Yan Guo, Almost exponential decay near Maxwellian,, Comm. Partial Differential Equations, 31 (2006), 417.  doi: 10.1080/03605300500361545.  Google Scholar

[22]

Robert M. Strain and Yan Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287.  doi: 10.1007/s00205-007-0067-3.  Google Scholar

[23]

R. M. Strain and K. Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $mathbbR^3_x$,, Kinetic and Related Models, 5 (2012), 383.   Google Scholar

[24]

M. E. Taylor, "Partial Differential Equations. III. Nonlinear Equations,", Applied Mathematical Sciences, 117 (1997).   Google Scholar

[25]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179.  doi: 10.3792/pja/1195519027.  Google Scholar

[26]

Seiji Ukai and Kiyoshi Asano, On the Cauchy problem of the Boltzmann equation with a soft potential,, Publ. Res. Inst. Math. Sci., 18 (1982), 477.  doi: 10.2977/prims/1195183569.  Google Scholar

[27]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71.   Google Scholar

[28]

C. Villani, "Hypocoercivity,", Mem. Amer. Math. Soc., 202 (2009).   Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[3]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[6]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[13]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[14]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[15]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[20]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]