• Previous Article
    Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation
  • KRM Home
  • This Issue
  • Next Article
    Optimal time decay of the non cut-off Boltzmann equation in the whole space
September  2012, 5(3): 615-638. doi: 10.3934/krm.2012.5.615

Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$

1. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China, China, China

Received  January 2012 Revised  February 2012 Published  August 2012

We are concerned with the long-time behavior of global strong solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$, where the electric field is governed by the self-consistent Poisson equation. When the regular initial perturbations belong to $H^{4}(\mathbb{R}^{3})\cap \dot{B}_{1,\infty}^{-s}(\mathbb{R}^{3})$ with $s\in [0,1]$, we show that the density and momentum of the system converge to their equilibrium state at the optimal $L^2$-rates $(1+t)^{-\frac{3}{4}-\frac{s}{2}}$ and $(1+t)^{-\frac{1}{4}-\frac{s}{2}}$ respectively, and the decay rate is still $(1+t)^{-\frac{3}{4}}$ for temperature which is proved to be not optimal.
Citation: Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615
References:
[1]

K. Deckelnick, $L^2$-decay for the compressible Navier-Stokes equations in unbounded domains,, Comm. Partial Differential Equations, 18 (1993), 1445.  doi: 10.1080/03605309308820981.  Google Scholar

[2]

D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem,, Quart. Appl. Math, 61 (2003), 345.   Google Scholar

[3]

B. Ducomet and A. Zlotnik, Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system,, Appl. Math. Lett., 18 (2005), 1190.  doi: 10.1016/j.aml.2004.12.002.  Google Scholar

[4]

B. Ducomet, A remark about global existence for the Navier-Stokes-Poisson system,, Appl. Math. Lett., 12 (1999), 31.  doi: 10.1016/S0893-9659(99)00098-1.  Google Scholar

[5]

B. Ducomet, E. Feireisl, H. Petzeltová and I. Straškraba, Global in time weak solution for compressible barotropic self-gravitating fluids,, Discrete Contin. Dyn. Syst, 11 (2004), 113.  doi: 10.3934/dcds.2004.11.113.  Google Scholar

[6]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, to appear in Commun. Part. Diff. Equ., (2012).   Google Scholar

[7]

C. Hao and H.-L. Li, Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions,, J. Differential Equation, 246 (2009), 4791.  doi: 10.1016/j.jde.2008.11.019.  Google Scholar

[8]

L. Hsiao, H.-L. Li, T. Yang and C. Zou, Compressible non-isentropic bipolar Navier-Stokes-Poisson system in $\mathbbR^3$,, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 2169.   Google Scholar

[9]

D. L. Li, The Green's function of the Navier-Stokes equations for gas dynamics in $\mathbbR^3$,, Comm. Math. Phy., 257 (2005), 579.  doi: 10.1007/s00220-005-1351-4.  Google Scholar

[10]

H.-L. Li, A. Matsumura and G.-J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, Arch. Ration. Mech. Anal., 196 (2010), 681.  doi: 10.1007/s00205-009-0255-4.  Google Scholar

[11]

H.-L. Li, T. Yang and C. Zou, Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system,, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 1721.   Google Scholar

[12]

H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbbR^3$,, Math. Methods Appl. Sci., 34 (2011), 670.  doi: 10.1002/mma.1391.  Google Scholar

[13]

H.-L. Li and T. Zhang, Large time behavior of solutions to $3D$ compressible Navier-Stokes-Poisson system,, Sci. China Math., 55 (2012), 159.  doi: 10.1007/s11425-011-4280-z.  Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schimeiser, "Semiconductor,'', Springer, (1990).   Google Scholar

[15]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids,, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337.  doi: 10.3792/pjaa.55.337.  Google Scholar

[16]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[17]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of viscous and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445.  doi: 10.1007/BF01214738.  Google Scholar

[18]

V. A. Solonnikov, Evolution free boundary problem for equations of motion viscous compressible self gravitating fluid,, Stability Appl. Anal. Contin. Media, 3 (1993), 257.   Google Scholar

[19]

Z. Tan and G. C. Wu, Global existence for the non-isentropic compressible Navier-Stokes-Poisson system in three and higher dimensions,, Nonlinear Anal. Real World Appl., 13 (2012), 650.  doi: 10.1016/j.nonrwa.2011.08.005.  Google Scholar

[20]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations,, J. Diff. Equ., 253 (2012), 273.  doi: 10.1016/j.jde.2012.03.006.  Google Scholar

[21]

G.-J. Zhang, H.-L. Li and C.-J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, J. Differential Equations, 250 (2011), 866.  doi: 10.1016/j.jde.2010.07.035.  Google Scholar

[22]

Y.-H. Zhang and Z. Tan, On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow,, Math. Methods Appl. Sci., 30 (2007), 305.  doi: 10.1002/mma.786.  Google Scholar

show all references

References:
[1]

K. Deckelnick, $L^2$-decay for the compressible Navier-Stokes equations in unbounded domains,, Comm. Partial Differential Equations, 18 (1993), 1445.  doi: 10.1080/03605309308820981.  Google Scholar

[2]

D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem,, Quart. Appl. Math, 61 (2003), 345.   Google Scholar

[3]

B. Ducomet and A. Zlotnik, Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system,, Appl. Math. Lett., 18 (2005), 1190.  doi: 10.1016/j.aml.2004.12.002.  Google Scholar

[4]

B. Ducomet, A remark about global existence for the Navier-Stokes-Poisson system,, Appl. Math. Lett., 12 (1999), 31.  doi: 10.1016/S0893-9659(99)00098-1.  Google Scholar

[5]

B. Ducomet, E. Feireisl, H. Petzeltová and I. Straškraba, Global in time weak solution for compressible barotropic self-gravitating fluids,, Discrete Contin. Dyn. Syst, 11 (2004), 113.  doi: 10.3934/dcds.2004.11.113.  Google Scholar

[6]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, to appear in Commun. Part. Diff. Equ., (2012).   Google Scholar

[7]

C. Hao and H.-L. Li, Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions,, J. Differential Equation, 246 (2009), 4791.  doi: 10.1016/j.jde.2008.11.019.  Google Scholar

[8]

L. Hsiao, H.-L. Li, T. Yang and C. Zou, Compressible non-isentropic bipolar Navier-Stokes-Poisson system in $\mathbbR^3$,, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 2169.   Google Scholar

[9]

D. L. Li, The Green's function of the Navier-Stokes equations for gas dynamics in $\mathbbR^3$,, Comm. Math. Phy., 257 (2005), 579.  doi: 10.1007/s00220-005-1351-4.  Google Scholar

[10]

H.-L. Li, A. Matsumura and G.-J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, Arch. Ration. Mech. Anal., 196 (2010), 681.  doi: 10.1007/s00205-009-0255-4.  Google Scholar

[11]

H.-L. Li, T. Yang and C. Zou, Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system,, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 1721.   Google Scholar

[12]

H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbbR^3$,, Math. Methods Appl. Sci., 34 (2011), 670.  doi: 10.1002/mma.1391.  Google Scholar

[13]

H.-L. Li and T. Zhang, Large time behavior of solutions to $3D$ compressible Navier-Stokes-Poisson system,, Sci. China Math., 55 (2012), 159.  doi: 10.1007/s11425-011-4280-z.  Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schimeiser, "Semiconductor,'', Springer, (1990).   Google Scholar

[15]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids,, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337.  doi: 10.3792/pjaa.55.337.  Google Scholar

[16]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[17]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of viscous and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445.  doi: 10.1007/BF01214738.  Google Scholar

[18]

V. A. Solonnikov, Evolution free boundary problem for equations of motion viscous compressible self gravitating fluid,, Stability Appl. Anal. Contin. Media, 3 (1993), 257.   Google Scholar

[19]

Z. Tan and G. C. Wu, Global existence for the non-isentropic compressible Navier-Stokes-Poisson system in three and higher dimensions,, Nonlinear Anal. Real World Appl., 13 (2012), 650.  doi: 10.1016/j.nonrwa.2011.08.005.  Google Scholar

[20]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations,, J. Diff. Equ., 253 (2012), 273.  doi: 10.1016/j.jde.2012.03.006.  Google Scholar

[21]

G.-J. Zhang, H.-L. Li and C.-J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, J. Differential Equations, 250 (2011), 866.  doi: 10.1016/j.jde.2010.07.035.  Google Scholar

[22]

Y.-H. Zhang and Z. Tan, On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow,, Math. Methods Appl. Sci., 30 (2007), 305.  doi: 10.1002/mma.786.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[5]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[6]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[11]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[15]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[16]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[17]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[18]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[19]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[20]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]