\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability of the solutions to the Boltzmann equation for the Benard problem

Abstract Related Papers Cited by
  • We complete the result in [2] by showing the exponential decay of the perturbation of the laminar solution below the critical Rayleigh number and of the convective solutions above the critical Rayleigh number, in the kinetic framework.
    Mathematics Subject Classification: Primary: 82B40, 82C26; Secondary 76P05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem, Bull. Academia Sinica, 3 (2008), 51-97.

    [2]

    L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Archive for Rational Mechanics, 198 (2010), 125-187.doi: 10.1007/s00205-010-0292-z.

    [3]

    L. Arkeryd and A. Nouri, Asymptotic techniques for kinetic problems of Boltzmann type, Proceedings of the 3rd Edition of the Summer School in "Methods and Models of Kinetic Theory," Riv. Mat. Univ. Parma, 7 (2007), 1-74.

    [4]

    P. G. Drazin and W. H. Reid, "Hydrodynamic Instability," Cambridge Univ. Press, Cambridge, 1981.

    [5]

    R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq Regime, J. Stat. Phys., 90 (1998), 1129-1178.

    [6]

    C. Foias, O. P. Manley and R. Temam, Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Non-Linear Analysis, 11 (1987), 939-967.

    [7]

    J. M. Ghidaglia, "Etude d'Écoulements Fluides Visqueux Incompressibles: Comportement pour les Grands Temps et Applications aux Attracteurs," Ph. D thesis, Orsay, 1984.

    [8]

    V. I. Iudovich, On the origin of convection, J. Appl. Math. Mech., 30 (1966), 1193-1199.

    [9]

    V. I. Iudovich, Free convection and bifurcation, J. Appl. Math. Mech., 31 (1967), 103-114.

    [10]

    V. I. Iudovich, Stability of convection flows, J. Appl. Math. Mech., 31 (1967), 272-281.

    [11]

    D. D. Joseph, On the stability of the Boussinesq equation, Arch. Rat. Mech. Anal., 20 (1965), 59-71.

    [12]

    N. B. Maslova, "Nonlinear Evolution Equations: Kinetic Approach," World Scientific, 1993.

    [13]

    T. Ma and S. Wang, Dynamic bifurcation and stability in the Rayleigh- Bénard convection, Comm. Math. Sci., 2 (2004), 159-183.

    [14]

    Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkhäuser Boston, 2002; Molecular gas dynamics, theory, techniques, and applications, World Scientific, Birkhäuser Boston, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return