Advanced Search
Article Contents
Article Contents

On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials

Abstract Related Papers Cited by
  • As for the positive part of Boltzmann's collision operator associated with the collision kernel of soft-potential type, we evaluate its Fourier transform explicitly and prove a set of bilinear estimates for $L^p$ and Sobolev regularity.
    Mathematics Subject Classification: 35Q82, 47G20, 76P05, 82B40.


    \begin{equation} \\ \end{equation}
  • [1]

    R. Alonso, E. Carneiro and I. Gamba, Convolution inequalities for the Boltzmann collision operator, Commun. Math. Phys., 298 (2010), 293-322.doi: 10.1007/s00220-010-1065-0.


    R. Alonso and I. Gamba, A revision on classical solutions to the Cauchy Boltzmann problem for soft potentials, J. Stat. Phys., 143 (2011), 740-746.doi: 10.1007/s10955-011-0205-z.


    G. Andrews, R. Askey and R. Roy, "Special Functions," Encyclopedia of Mathematics and Its Applications, Cambridge Univ. Press. 71 1999.


    A. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules, Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044.


    F. Bouchut and L. Desvillettes, A proof of the smoothing properties of the positive part of Boltzmann's kernel, Rev. Mat. Iberoamericana, 14 (1998), 47-61.doi: 10.4171/RMI/233.


    L. Desvillettes, About the use of the Fourier transform for the Boltzmannequation, Summer School on Methods and Models in Kinetic Theory, Riv. Mat. Univ. Parma (7), 2 (2003), 1-99.


    L. Grafakos, On multilinear fractional integrals, Studia Math., 102 (1992), 49-56.


    T. Gustafsson, $L^p$ estimates for the nonlinear spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal., 92 (1986), 23-57.doi: 10.1007/BF00250731.


    C. Kenig and E. Stein, Multilinear estimates and fractional integration, Math. Research Letters, 6 (1999), 1-15.


    P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II, J. Math. Kyoto Univ., 34 (1994), 391-427, 429-461.


    X. Lu, A direct method for the regularity of the gain term in the Boltzmann equation, J. Math. Anal. Appl., 228 (1998), 409-435.doi: 10.1006/jmaa.1998.6141.


    E. Lieb and M. Loss, "Analysis," Grad. Stud. Math., Amer. Math. Soc., 14, 1996.


    C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Rational Mech. Anal., 173 (2004), 169-212.doi: 10.1007/s00205-004-0316-7.


    E. Stein, "Singular Integrals and Differentiabilty Properties of Functions," Princeton Univ. Press, 1970.


    B. Wennberg, Regularity in the Boltzmann equation and the Radon transform, Comm. Partial Differential Equations, 19 (1994), 2057-2074.


    B. Wennberg, The geometry of binary collisions and generalized Radon transforms, Arch. Rational Mech. Anal., 139 (1997), 291-302.

  • 加载中

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint