December  2012, 5(4): 769-786. doi: 10.3934/krm.2012.5.769

On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials

1. 

Department of Mathematics, College of Natural Sciences, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, South Korea

Received  February 2012 Revised  May 2012 Published  November 2012

As for the positive part of Boltzmann's collision operator associated with the collision kernel of soft-potential type, we evaluate its Fourier transform explicitly and prove a set of bilinear estimates for $L^p$ and Sobolev regularity.
Citation: Yong-Kum Cho, Hera Yun. On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials. Kinetic & Related Models, 2012, 5 (4) : 769-786. doi: 10.3934/krm.2012.5.769
References:
[1]

R. Alonso, E. Carneiro and I. Gamba, Convolution inequalities for the Boltzmann collision operator,, Commun. Math. Phys., 298 (2010), 293. doi: 10.1007/s00220-010-1065-0. Google Scholar

[2]

R. Alonso and I. Gamba, A revision on classical solutions to the Cauchy Boltzmann problem for soft potentials,, J. Stat. Phys., 143 (2011), 740. doi: 10.1007/s10955-011-0205-z. Google Scholar

[3]

G. Andrews, R. Askey and R. Roy, "Special Functions,", Encyclopedia of Mathematics and Its Applications, 71 (1999). Google Scholar

[4]

A. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules,, Dokl. Akad. Nauk SSSR, 225 (1975), 1041. Google Scholar

[5]

F. Bouchut and L. Desvillettes, A proof of the smoothing properties of the positive part of Boltzmann's kernel,, Rev. Mat. Iberoamericana, 14 (1998), 47. doi: 10.4171/RMI/233. Google Scholar

[6]

L. Desvillettes, About the use of the Fourier transform for the Boltzmannequation,, Summer School on Methods and Models in Kinetic Theory, 2 (2003), 1. Google Scholar

[7]

L. Grafakos, On multilinear fractional integrals,, Studia Math., 102 (1992), 49. Google Scholar

[8]

T. Gustafsson, $L^p$ estimates for the nonlinear spatially homogeneous Boltzmann equation,, Arch. Rational Mech. Anal., 92 (1986), 23. doi: 10.1007/BF00250731. Google Scholar

[9]

C. Kenig and E. Stein, Multilinear estimates and fractional integration,, Math. Research Letters, 6 (1999), 1. Google Scholar

[10]

P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II,, J. Math. Kyoto Univ., 34 (1994), 391. Google Scholar

[11]

X. Lu, A direct method for the regularity of the gain term in the Boltzmann equation,, J. Math. Anal. Appl., 228 (1998), 409. doi: 10.1006/jmaa.1998.6141. Google Scholar

[12]

E. Lieb and M. Loss, "Analysis,", Grad. Stud. Math., 14 (1996). Google Scholar

[13]

C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off,, Arch. Rational Mech. Anal., 173 (2004), 169. doi: 10.1007/s00205-004-0316-7. Google Scholar

[14]

E. Stein, "Singular Integrals and Differentiabilty Properties of Functions,", Princeton Univ. Press, (1970). Google Scholar

[15]

B. Wennberg, Regularity in the Boltzmann equation and the Radon transform,, Comm. Partial Differential Equations, 19 (1994), 2057. Google Scholar

[16]

B. Wennberg, The geometry of binary collisions and generalized Radon transforms,, Arch. Rational Mech. Anal., 139 (1997), 291. Google Scholar

show all references

References:
[1]

R. Alonso, E. Carneiro and I. Gamba, Convolution inequalities for the Boltzmann collision operator,, Commun. Math. Phys., 298 (2010), 293. doi: 10.1007/s00220-010-1065-0. Google Scholar

[2]

R. Alonso and I. Gamba, A revision on classical solutions to the Cauchy Boltzmann problem for soft potentials,, J. Stat. Phys., 143 (2011), 740. doi: 10.1007/s10955-011-0205-z. Google Scholar

[3]

G. Andrews, R. Askey and R. Roy, "Special Functions,", Encyclopedia of Mathematics and Its Applications, 71 (1999). Google Scholar

[4]

A. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules,, Dokl. Akad. Nauk SSSR, 225 (1975), 1041. Google Scholar

[5]

F. Bouchut and L. Desvillettes, A proof of the smoothing properties of the positive part of Boltzmann's kernel,, Rev. Mat. Iberoamericana, 14 (1998), 47. doi: 10.4171/RMI/233. Google Scholar

[6]

L. Desvillettes, About the use of the Fourier transform for the Boltzmannequation,, Summer School on Methods and Models in Kinetic Theory, 2 (2003), 1. Google Scholar

[7]

L. Grafakos, On multilinear fractional integrals,, Studia Math., 102 (1992), 49. Google Scholar

[8]

T. Gustafsson, $L^p$ estimates for the nonlinear spatially homogeneous Boltzmann equation,, Arch. Rational Mech. Anal., 92 (1986), 23. doi: 10.1007/BF00250731. Google Scholar

[9]

C. Kenig and E. Stein, Multilinear estimates and fractional integration,, Math. Research Letters, 6 (1999), 1. Google Scholar

[10]

P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II,, J. Math. Kyoto Univ., 34 (1994), 391. Google Scholar

[11]

X. Lu, A direct method for the regularity of the gain term in the Boltzmann equation,, J. Math. Anal. Appl., 228 (1998), 409. doi: 10.1006/jmaa.1998.6141. Google Scholar

[12]

E. Lieb and M. Loss, "Analysis,", Grad. Stud. Math., 14 (1996). Google Scholar

[13]

C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off,, Arch. Rational Mech. Anal., 173 (2004), 169. doi: 10.1007/s00205-004-0316-7. Google Scholar

[14]

E. Stein, "Singular Integrals and Differentiabilty Properties of Functions,", Princeton Univ. Press, (1970). Google Scholar

[15]

B. Wennberg, Regularity in the Boltzmann equation and the Radon transform,, Comm. Partial Differential Equations, 19 (1994), 2057. Google Scholar

[16]

B. Wennberg, The geometry of binary collisions and generalized Radon transforms,, Arch. Rational Mech. Anal., 139 (1997), 291. Google Scholar

[1]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919

[2]

Yong-Kum Cho. On the homogeneous Boltzmann equation with soft-potential collision kernels. Kinetic & Related Models, 2015, 8 (2) : 309-333. doi: 10.3934/krm.2015.8.309

[3]

Alexander Alekseenko, Jeffrey Limbacher. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $ \mathcal{O}(N^2) $ operations using the discrete fourier transform. Kinetic & Related Models, 2019, 12 (4) : 703-726. doi: 10.3934/krm.2019027

[4]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[5]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[6]

Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299

[7]

Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453

[8]

Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187

[9]

Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174

[10]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[11]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[12]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[13]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[14]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic & Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[15]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[16]

Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic & Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019

[17]

Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024

[18]

James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137

[19]

Alexander Alekseenko, Truong Nguyen, Aihua Wood. A deterministic-stochastic method for computing the Boltzmann collision integral in $\mathcal{O}(MN)$ operations. Kinetic & Related Models, 2018, 11 (5) : 1211-1234. doi: 10.3934/krm.2018047

[20]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]