• Previous Article
    From individual to collective behaviour of coupled velocity jump processes: A locust example
  • KRM Home
  • This Issue
  • Next Article
    On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials
December  2012, 5(4): 787-816. doi: 10.3934/krm.2012.5.787

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles

1. 

INRIA-Nancy Grand Est, CALVI Project, and IRMA, Université de Strasbourg, 67084, STRASBOURG, France

2. 

INRIA-Rennes Bretagne Atlantique, IPSO Project, and IRMAR (Université de Rennes 1), 35042 RENNES, France

3. 

CNRS and IRMAR (Université de Rennes 1), and INRIA-Rennes Bretagne Atlantique, IPSO Project, 35042 RENNES, France

Received  April 2012 Revised  June 2012 Published  November 2012

This work is devoted to the numerical simulation of the Vlasov equation in the fluid limit using particles. To that purpose, we first perform a micro-macro decomposition as in [3] where asymptotic preserving schemes have been derived in the fluid limit. In [3], a uniform grid was used to approximate both the micro and the macro part of the full distribution function. Here, we modify this approach by using a particle approximation for the kinetic (micro) part, the fluid (macro) part being always discretized by standard finite volume schemes. There are many advantages in doing so: $(i)$ the so-obtained scheme presents a much less level of noise compared to the standard particle method; $(ii)$ the computational cost of the micro-macro model is reduced in the fluid regime since a small number of particles is needed for the micro part; $(iii)$ the scheme is asymptotic preserving in the sense that it is consistent with the kinetic equation in the rarefied regime and it degenerates into a uniformly (with respect to the Knudsen number) consistent (and deterministic) approximation of the limiting equation in the fluid regime.
Citation: Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787
References:
[1]

C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations I. Formal derivation,, J. Statist. Phys., 63 (1991), 323. doi: 10.1007/BF01026608. Google Scholar

[2]

C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation,, Institute of Physics (IOP), (2004). Google Scholar

[3]

M. Bennoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics,, J. Comput. Phys., 227 (2008), 3781. doi: 10.1016/j.jcp.2007.11.032. Google Scholar

[4]

S. Brunner, E. Valeo and J. A. Krommes, Collisional delta-f scheme with evolving background for transport time scale simulations,, Phys. of Plasmas, 12 (1999). Google Scholar

[5]

S. Brunner, E. Valeo and J. A. Krommes, Linear delta-f simulations of nonlocal electron heat transport,, Phys. of Plasmas, 7 (2000). Google Scholar

[6]

J.-M. Coron and B. Perthame, Numerical passage from kinetic to fluid equations,, SIAM J. Numer. Anal., 28 (1991), 26. Google Scholar

[7]

G.-H. Cottet and P.-A. Raviart, On particle-in-cell methods for the one-dimensional Vlasov-Poisson equations,, SIAM J. of Numer. Anal., 21 (1984), 52. Google Scholar

[8]

N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann-BGK equation,, J. Comput. Phys., 199 (2004), 776. doi: 10.1016/j.jcp.2004.03.007. Google Scholar

[9]

N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: Diffusion and high-field scaling limits,, Kin. Rel. Models, 4 (2011), 441. Google Scholar

[10]

N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for the Vlasov equation,, J. Comput. Phys., 229 (2010), 1927. doi: 10.1016/j.jcp.2009.11.007. Google Scholar

[11]

P. Degond and F. J. Mustieles, A deterministic approximation of diffusion equations using particles,, SIAM J. on Scientific and Statistical Computing, 11 (1990), 293. doi: 10.1137/0911018. Google Scholar

[12]

P. Degond and G. Dimarco, Fluid simulations with localized Boltzmann upscaling by direct simulation Monte-Carlo,, J. Comput. Phys., 231 (2012), 2414. doi: 10.1016/j.jcp.2011.11.030. Google Scholar

[13]

P. Degond, G. Dimarco and L. Pareschi, The moment guided Monte Carlo method,, International Journal for Numerical Methods in Fluids, 67 (2011), 189. doi: 10.1002/fld.2345. Google Scholar

[14]

P. Degond, S. Jin and L. Mieussens, A smooth transition model between kinetic and hydrodynamic equations,, J. Comput. Phys., 209 (2005), 665. doi: 10.1016/j.jcp.2005.03.025. Google Scholar

[15]

P. Degond and S. Mas-Gallic, The weighted particle method for convection-diffusion equations, Part 2: The anisotropic case,, Math. Comput., 53 (1989), 509. doi: 10.1090/S0025-5718-1989-0983560-5. Google Scholar

[16]

F. Delaurens and F. J. Mustieles, A deterministic particle method for solving kinetic transport equations: The semiconductor Boltzmann equation case,, SIAM J. Appl. Math., 52 (1991), 973. doi: 10.1137/0152056. Google Scholar

[17]

F. Filbet and S. Jin, A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources,, J. Comp. Phys., 229 (2010), 7625. doi: 10.1016/j.jcp.2010.06.017. Google Scholar

[18]

F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model for the Boltzmann equation,, J. Sci. Computing, 46 (2011), 204. doi: 10.1007/s10915-010-9394-x. Google Scholar

[19]

E. Gabetta, L. Pareschi and G. Toscani, Relaxation schemes for nonlinear kinetic equations,, SIAM J. Numer. Anal., 34 (1997), 2168. doi: 10.1137/S0036142995287768. Google Scholar

[20]

D. Issautier, Convergence of a weighted particle method for solving the Boltzmann (BGK) equation,, SIAM J. Numer. Anal., 33 (1994), 2099. doi: 10.1137/S0036142994266856. Google Scholar

[21]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations,, SIAM J. Sci. Comput., 21 (1999), 441. doi: 10.1137/S1064827598334599. Google Scholar

[22]

M. Lemou, Relaxed micro-macro schemes for kinetic equations,, Comptes Rendus Math\'ematique, 348 (2010), 455. Google Scholar

[23]

M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit,, SIAM J. Sci. Comp., 31 (2008), 334. doi: 10.1137/07069479X. Google Scholar

[24]

R. J. LeVeque, "Numerical Methods for Conservation Laws,", Lectures in Mathematics Birkhauser Verlag, (1992). Google Scholar

[25]

L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics,, Math. Models and Meth. Appl. Sci., 8 (2000), 1121. Google Scholar

[26]

B. Niclot, P. Degond and F. Poupaud, Deterministic particle simulations of the Boltzmann transport equation of semiconductors,, J. Comput. Phys., 78 (1988), 313. doi: 10.1016/0021-9991(88)90053-8. Google Scholar

[27]

L. Pareschi and G. Russo, Asymptotic preserving Monte Carlo methods for the Boltzmann equation,, Trans. Theo. Stat. Phys., 29 (2000), 415. doi: 10.1080/00411450008205882. Google Scholar

[28]

L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation,, SIAM J. Sci. Comput., 23 (2001), 1253. doi: 10.1137/S1064827500375916. Google Scholar

[29]

P.-A. Raviart, "An Analysis of Particle Methods in Numerical Methods in Fluid Dynamics,", Lecture Notes in Math. 1127, (1127). Google Scholar

[30]

E. Sonnendrücker, Mathematical models for fusion,, Lecture Notes, (). Google Scholar

[31]

B. Yan and S. Jin, A successive penalty-based asymptotic-preserving scheme for kinetic equations,, submitted., (). Google Scholar

show all references

References:
[1]

C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations I. Formal derivation,, J. Statist. Phys., 63 (1991), 323. doi: 10.1007/BF01026608. Google Scholar

[2]

C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation,, Institute of Physics (IOP), (2004). Google Scholar

[3]

M. Bennoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics,, J. Comput. Phys., 227 (2008), 3781. doi: 10.1016/j.jcp.2007.11.032. Google Scholar

[4]

S. Brunner, E. Valeo and J. A. Krommes, Collisional delta-f scheme with evolving background for transport time scale simulations,, Phys. of Plasmas, 12 (1999). Google Scholar

[5]

S. Brunner, E. Valeo and J. A. Krommes, Linear delta-f simulations of nonlocal electron heat transport,, Phys. of Plasmas, 7 (2000). Google Scholar

[6]

J.-M. Coron and B. Perthame, Numerical passage from kinetic to fluid equations,, SIAM J. Numer. Anal., 28 (1991), 26. Google Scholar

[7]

G.-H. Cottet and P.-A. Raviart, On particle-in-cell methods for the one-dimensional Vlasov-Poisson equations,, SIAM J. of Numer. Anal., 21 (1984), 52. Google Scholar

[8]

N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann-BGK equation,, J. Comput. Phys., 199 (2004), 776. doi: 10.1016/j.jcp.2004.03.007. Google Scholar

[9]

N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: Diffusion and high-field scaling limits,, Kin. Rel. Models, 4 (2011), 441. Google Scholar

[10]

N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for the Vlasov equation,, J. Comput. Phys., 229 (2010), 1927. doi: 10.1016/j.jcp.2009.11.007. Google Scholar

[11]

P. Degond and F. J. Mustieles, A deterministic approximation of diffusion equations using particles,, SIAM J. on Scientific and Statistical Computing, 11 (1990), 293. doi: 10.1137/0911018. Google Scholar

[12]

P. Degond and G. Dimarco, Fluid simulations with localized Boltzmann upscaling by direct simulation Monte-Carlo,, J. Comput. Phys., 231 (2012), 2414. doi: 10.1016/j.jcp.2011.11.030. Google Scholar

[13]

P. Degond, G. Dimarco and L. Pareschi, The moment guided Monte Carlo method,, International Journal for Numerical Methods in Fluids, 67 (2011), 189. doi: 10.1002/fld.2345. Google Scholar

[14]

P. Degond, S. Jin and L. Mieussens, A smooth transition model between kinetic and hydrodynamic equations,, J. Comput. Phys., 209 (2005), 665. doi: 10.1016/j.jcp.2005.03.025. Google Scholar

[15]

P. Degond and S. Mas-Gallic, The weighted particle method for convection-diffusion equations, Part 2: The anisotropic case,, Math. Comput., 53 (1989), 509. doi: 10.1090/S0025-5718-1989-0983560-5. Google Scholar

[16]

F. Delaurens and F. J. Mustieles, A deterministic particle method for solving kinetic transport equations: The semiconductor Boltzmann equation case,, SIAM J. Appl. Math., 52 (1991), 973. doi: 10.1137/0152056. Google Scholar

[17]

F. Filbet and S. Jin, A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources,, J. Comp. Phys., 229 (2010), 7625. doi: 10.1016/j.jcp.2010.06.017. Google Scholar

[18]

F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model for the Boltzmann equation,, J. Sci. Computing, 46 (2011), 204. doi: 10.1007/s10915-010-9394-x. Google Scholar

[19]

E. Gabetta, L. Pareschi and G. Toscani, Relaxation schemes for nonlinear kinetic equations,, SIAM J. Numer. Anal., 34 (1997), 2168. doi: 10.1137/S0036142995287768. Google Scholar

[20]

D. Issautier, Convergence of a weighted particle method for solving the Boltzmann (BGK) equation,, SIAM J. Numer. Anal., 33 (1994), 2099. doi: 10.1137/S0036142994266856. Google Scholar

[21]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations,, SIAM J. Sci. Comput., 21 (1999), 441. doi: 10.1137/S1064827598334599. Google Scholar

[22]

M. Lemou, Relaxed micro-macro schemes for kinetic equations,, Comptes Rendus Math\'ematique, 348 (2010), 455. Google Scholar

[23]

M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit,, SIAM J. Sci. Comp., 31 (2008), 334. doi: 10.1137/07069479X. Google Scholar

[24]

R. J. LeVeque, "Numerical Methods for Conservation Laws,", Lectures in Mathematics Birkhauser Verlag, (1992). Google Scholar

[25]

L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics,, Math. Models and Meth. Appl. Sci., 8 (2000), 1121. Google Scholar

[26]

B. Niclot, P. Degond and F. Poupaud, Deterministic particle simulations of the Boltzmann transport equation of semiconductors,, J. Comput. Phys., 78 (1988), 313. doi: 10.1016/0021-9991(88)90053-8. Google Scholar

[27]

L. Pareschi and G. Russo, Asymptotic preserving Monte Carlo methods for the Boltzmann equation,, Trans. Theo. Stat. Phys., 29 (2000), 415. doi: 10.1080/00411450008205882. Google Scholar

[28]

L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation,, SIAM J. Sci. Comput., 23 (2001), 1253. doi: 10.1137/S1064827500375916. Google Scholar

[29]

P.-A. Raviart, "An Analysis of Particle Methods in Numerical Methods in Fluid Dynamics,", Lecture Notes in Math. 1127, (1127). Google Scholar

[30]

E. Sonnendrücker, Mathematical models for fusion,, Lecture Notes, (). Google Scholar

[31]

B. Yan and S. Jin, A successive penalty-based asymptotic-preserving scheme for kinetic equations,, submitted., (). Google Scholar

[1]

Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic & Related Models, 2011, 4 (2) : 441-477. doi: 10.3934/krm.2011.4.441

[2]

Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic & Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79

[3]

Vincent Giovangigli, Wen-An Yong. Erratum: ``Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion''. Kinetic & Related Models, 2016, 9 (4) : 813-813. doi: 10.3934/krm.2016018

[4]

Céline Baranger, Marzia Bisi, Stéphane Brull, Laurent Desvillettes. On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic & Related Models, 2018, 11 (4) : 821-858. doi: 10.3934/krm.2018033

[5]

Francesca Marcellini. Free-congested and micro-macro descriptions of traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 543-556. doi: 10.3934/dcdss.2014.7.543

[6]

Viktor I. Gerasimenko, Igor V. Gapyak. Hard sphere dynamics and the Enskog equation. Kinetic & Related Models, 2012, 5 (3) : 459-484. doi: 10.3934/krm.2012.5.459

[7]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[8]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[9]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[10]

Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146

[11]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[12]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[13]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

[14]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[15]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[16]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[17]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[18]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[19]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[20]

Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic & Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (12)

[Back to Top]