\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles

Abstract Related Papers Cited by
  • This work is devoted to the numerical simulation of the Vlasov equation in the fluid limit using particles. To that purpose, we first perform a micro-macro decomposition as in [3] where asymptotic preserving schemes have been derived in the fluid limit. In [3], a uniform grid was used to approximate both the micro and the macro part of the full distribution function. Here, we modify this approach by using a particle approximation for the kinetic (micro) part, the fluid (macro) part being always discretized by standard finite volume schemes. There are many advantages in doing so: $(i)$ the so-obtained scheme presents a much less level of noise compared to the standard particle method; $(ii)$ the computational cost of the micro-macro model is reduced in the fluid regime since a small number of particles is needed for the micro part; $(iii)$ the scheme is asymptotic preserving in the sense that it is consistent with the kinetic equation in the rarefied regime and it degenerates into a uniformly (with respect to the Knudsen number) consistent (and deterministic) approximation of the limiting equation in the fluid regime.
    Mathematics Subject Classification: 65M06, 35B25, 82C80, 82D10, 41A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations I. Formal derivation, J. Statist. Phys., 63 (1991), 323-344.doi: 10.1007/BF01026608.

    [2]

    C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation, Institute of Physics (IOP), Series in Plasma Physics 2004.

    [3]

    M. Bennoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys., 227 (2008), 3781-3803.doi: 10.1016/j.jcp.2007.11.032.

    [4]

    S. Brunner, E. Valeo and J. A. Krommes, Collisional delta-f scheme with evolving background for transport time scale simulations, Phys. of Plasmas, 12 (1999).

    [5]

    S. Brunner, E. Valeo and J. A. Krommes, Linear delta-f simulations of nonlocal electron heat transport, Phys. of Plasmas, 7 (2000).

    [6]

    J.-M. Coron and B. Perthame, Numerical passage from kinetic to fluid equations, SIAM J. Numer. Anal., 28 (1991), 26-42.

    [7]

    G.-H. Cottet and P.-A. Raviart, On particle-in-cell methods for the one-dimensional Vlasov-Poisson equations, SIAM J. of Numer. Anal., 21 (1984), 52-76.

    [8]

    N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann-BGK equation, J. Comput. Phys., 199 (2004), 776-808.doi: 10.1016/j.jcp.2004.03.007.

    [9]

    N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: Diffusion and high-field scaling limits, Kin. Rel. Models, 4 (2011), 441-477.

    [10]

    N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for the Vlasov equation, J. Comput. Phys., 229 (2010), 1927-1953.doi: 10.1016/j.jcp.2009.11.007.

    [11]

    P. Degond and F. J. Mustieles, A deterministic approximation of diffusion equations using particles, SIAM J. on Scientific and Statistical Computing, 11 (1990), 293-310.doi: 10.1137/0911018.

    [12]

    P. Degond and G. Dimarco, Fluid simulations with localized Boltzmann upscaling by direct simulation Monte-Carlo, J. Comput. Phys., 231 (2012), 2414-2437.doi: 10.1016/j.jcp.2011.11.030.

    [13]

    P. Degond, G. Dimarco and L. Pareschi, The moment guided Monte Carlo method, International Journal for Numerical Methods in Fluids, 67 (2011), 189-213.doi: 10.1002/fld.2345.

    [14]

    P. Degond, S. Jin and L. Mieussens, A smooth transition model between kinetic and hydrodynamic equations, J. Comput. Phys., 209 (2005), 665-694.doi: 10.1016/j.jcp.2005.03.025.

    [15]

    P. Degond and S. Mas-Gallic, The weighted particle method for convection-diffusion equations, Part 2: The anisotropic case, Math. Comput., 53 (1989), 509-525.doi: 10.1090/S0025-5718-1989-0983560-5.

    [16]

    F. Delaurens and F. J. Mustieles, A deterministic particle method for solving kinetic transport equations: The semiconductor Boltzmann equation case, SIAM J. Appl. Math., 52 (1991), 973-988.doi: 10.1137/0152056.

    [17]

    F. Filbet and S. Jin, A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources, J. Comp. Phys., 229 (2010), 7625-7648.doi: 10.1016/j.jcp.2010.06.017.

    [18]

    F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model for the Boltzmann equation, J. Sci. Computing, 46 (2011), 204-224.doi: 10.1007/s10915-010-9394-x.

    [19]

    E. Gabetta, L. Pareschi and G. Toscani, Relaxation schemes for nonlinear kinetic equations, SIAM J. Numer. Anal., 34 (1997), 2168-2194.doi: 10.1137/S0036142995287768.

    [20]

    D. Issautier, Convergence of a weighted particle method for solving the Boltzmann (BGK) equation, SIAM J. Numer. Anal., 33 (1994), 2099-2119.doi: 10.1137/S0036142994266856.

    [21]

    S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441-454.doi: 10.1137/S1064827598334599.

    [22]

    M. Lemou, Relaxed micro-macro schemes for kinetic equations, Comptes Rendus Math\'ematique, 348 (2010), 455-460.

    [23]

    M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comp., 31 (2008), 334-368.doi: 10.1137/07069479X.

    [24]

    R. J. LeVeque, "Numerical Methods for Conservation Laws," Lectures in Mathematics Birkhauser Verlag, Basel, 1992.

    [25]

    L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics, Math. Models and Meth. Appl. Sci., 8 (2000), 1121-1149.

    [26]

    B. Niclot, P. Degond and F. Poupaud, Deterministic particle simulations of the Boltzmann transport equation of semiconductors, J. Comput. Phys., 78 (1988), 313-349.doi: 10.1016/0021-9991(88)90053-8.

    [27]

    L. Pareschi and G. Russo, Asymptotic preserving Monte Carlo methods for the Boltzmann equation, Trans. Theo. Stat. Phys., 29 (2000), 415-430.doi: 10.1080/00411450008205882.

    [28]

    L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput., 23 (2001), 1253-1273.doi: 10.1137/S1064827500375916.

    [29]

    P.-A. Raviart, "An Analysis of Particle Methods in Numerical Methods in Fluid Dynamics," Lecture Notes in Math. 1127, F. Brezzi ed., Springer-Verlag, Berlin, 1985.

    [30]

    E. SonnendrückerMathematical models for fusion, Lecture Notes, University of Strasbourg, http://www-irma.u-strasbg.fr/~sonnen/.

    [31]

    B. Yan and S. JinA successive penalty-based asymptotic-preserving scheme for kinetic equations, submitted.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(173) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return