-
Previous Article
Coupling of non-local driving behaviour with fundamental diagrams
- KRM Home
- This Issue
-
Next Article
Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles
From individual to collective behaviour of coupled velocity jump processes: A locust example
1. | University of Oxford, Mathematical Institute, 24-29 St Giles', Oxford, OX1 3LB |
2. | King Abdullah University of Science and Technology, Computer, Electrical and Mathematical Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia |
References:
[1] |
L. Baum and M. Katz, Convergence rates in the law of large numbers,, Transactions of the American Mathematical Society, 120 (1965), 108.
doi: 10.1090/S0002-9947-1965-0198524-1. |
[2] |
S. Bazazi, J. Buhl, J. Hale, M. Anstey, G. Sword, S. Simpson and I. Couzin, Collective motion and cannibalism in locust migratory bands,, Current Biology, 18 (2008), 735.
doi: 10.1016/j.cub.2008.04.035. |
[3] |
J. Buhl, D. Sumpter, I. Couzin, J. Hale, E. Despland, E. Miller and S. Simpson, From disorder to order in marching locusts,, Science, 312 (2006), 1402.
doi: 10.1126/science.1125142. |
[4] |
J. Buhl, G. Sword, F. Clissold and S. Simpson, Group structure in locust migratory bands,, Behav. Ecol. Sociobiol., 65 (2011), 265.
doi: 10.1007/s00265-010-1041-x. |
[5] |
J. Carrillo, M. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.
|
[6] |
J. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM Journal on Mathematical Analysis, 42 (2010), 218.
doi: 10.1137/090757290. |
[7] |
J. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, hydrodynamic models of swarming,, in, (2010), 297.
|
[8] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,'', Applied Mathematical Sciences, 106 (1994).
|
[9] |
E. Codling and N. Hill, Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters,, Journal of Mathematical Biology, 51 (2005), 527.
doi: 10.1007/s00285-005-0317-7. |
[10] |
A. Czirók, A. Barabási and T. Vicsek, Collective motion of self-propelled particles: Kinetic phase transition in one dimension,, Physical Review Letters, 82 (1999), 209.
doi: 10.1103/PhysRevLett.82.209. |
[11] |
R. Erban, I. Kevrekidis, D. Adalsteinsson and T. Elston, Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation,, Journal of Chemical Physics, 124 (2006). Google Scholar |
[12] |
R. Erban and H. Othmer, From individual to collective behaviour in bacterial chemotaxis,, SIAM Journal on Applied Mathematics, 65 (2004), 361.
doi: 10.1137/S0036139903433232. |
[13] |
R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multi-scale modeling in biology>,, Multiscale Modeling and Simulation, 3 (2005), 362.
|
[14] |
C. Escudero, C. Yates, J. Buhl, I. Couzin, R. Erban, I. Kevrekidis and P. Maini, Ergodic directional switching in mobile insect groups,, Physical Review E, 82 (2010). Google Scholar |
[15] |
L. Evans, "Partial Differential Equations,'', American Mathematical Society, (1998). Google Scholar |
[16] |
W. Feller, "An Introduction to Probability Theory and its Applications,'', $3^{rd}$ edition, (1967).
|
[17] |
M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the povzner-boltzmann equation,, Physica D: Nonlinear Phenomena, 240 (2011), 21.
doi: 10.1016/j.physd.2010.08.003. |
[18] |
D. Gillespie, "Markov Processes, An Introduction for Physical Scientists,'', Academic Press, (1992).
|
[19] |
S. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinetic and Related Models, 1 (2008), 415.
|
[20] |
P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: fifty years after Kramers,, Reviews of Modern Physics, 62 (1990), 251.
doi: 10.1103/RevModPhys.62.251. |
[21] |
J. Haskovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Journal of Statistical Physics, 135 (2009), 133.
doi: 10.1007/s10955-009-9717-1. |
[22] |
J. Haskovec and C. Schmeiser, Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Communications in Partial Differential Equations, 36 (2011), 940.
doi: 10.1080/03605302.2010.538783. |
[23] |
N. Hill and D. Häder, A biased random walk model for the trajectories of swimming micro-organisms,, Journal of Theoretical Biology, 186 (1997), 503.
doi: 10.1006/jtbi.1997.0421. |
[24] |
M. Kac, A stochastic model related to the telegrapher's equation,, Rocky Mountain Journal of Mathematics, 4 (1974), 497.
|
[25] |
H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems,, Journal of Mathematical Biology, 26 (1988), 263.
doi: 10.1007/BF00277392. |
[26] |
W. Rudin, "Functional Analysis,'', McGraw-Hill Science, (1991).
|
[27] |
A. Sznitman, "Topics in Propagation of Chaos,'', Lecture notes in mathematics, 1464 (1991).
|
[28] |
N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', $3^{rd}$ edition, (2007). Google Scholar |
[29] |
C. Yates, R. Erban, C. Escudero, I. Couzin, J. Buhl, I. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion,, Proceedings of the National Academy of Sciences USA, 106 (2009), 5464.
doi: 10.1073/pnas.0811195106. |
show all references
References:
[1] |
L. Baum and M. Katz, Convergence rates in the law of large numbers,, Transactions of the American Mathematical Society, 120 (1965), 108.
doi: 10.1090/S0002-9947-1965-0198524-1. |
[2] |
S. Bazazi, J. Buhl, J. Hale, M. Anstey, G. Sword, S. Simpson and I. Couzin, Collective motion and cannibalism in locust migratory bands,, Current Biology, 18 (2008), 735.
doi: 10.1016/j.cub.2008.04.035. |
[3] |
J. Buhl, D. Sumpter, I. Couzin, J. Hale, E. Despland, E. Miller and S. Simpson, From disorder to order in marching locusts,, Science, 312 (2006), 1402.
doi: 10.1126/science.1125142. |
[4] |
J. Buhl, G. Sword, F. Clissold and S. Simpson, Group structure in locust migratory bands,, Behav. Ecol. Sociobiol., 65 (2011), 265.
doi: 10.1007/s00265-010-1041-x. |
[5] |
J. Carrillo, M. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.
|
[6] |
J. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM Journal on Mathematical Analysis, 42 (2010), 218.
doi: 10.1137/090757290. |
[7] |
J. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, hydrodynamic models of swarming,, in, (2010), 297.
|
[8] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,'', Applied Mathematical Sciences, 106 (1994).
|
[9] |
E. Codling and N. Hill, Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters,, Journal of Mathematical Biology, 51 (2005), 527.
doi: 10.1007/s00285-005-0317-7. |
[10] |
A. Czirók, A. Barabási and T. Vicsek, Collective motion of self-propelled particles: Kinetic phase transition in one dimension,, Physical Review Letters, 82 (1999), 209.
doi: 10.1103/PhysRevLett.82.209. |
[11] |
R. Erban, I. Kevrekidis, D. Adalsteinsson and T. Elston, Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation,, Journal of Chemical Physics, 124 (2006). Google Scholar |
[12] |
R. Erban and H. Othmer, From individual to collective behaviour in bacterial chemotaxis,, SIAM Journal on Applied Mathematics, 65 (2004), 361.
doi: 10.1137/S0036139903433232. |
[13] |
R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multi-scale modeling in biology>,, Multiscale Modeling and Simulation, 3 (2005), 362.
|
[14] |
C. Escudero, C. Yates, J. Buhl, I. Couzin, R. Erban, I. Kevrekidis and P. Maini, Ergodic directional switching in mobile insect groups,, Physical Review E, 82 (2010). Google Scholar |
[15] |
L. Evans, "Partial Differential Equations,'', American Mathematical Society, (1998). Google Scholar |
[16] |
W. Feller, "An Introduction to Probability Theory and its Applications,'', $3^{rd}$ edition, (1967).
|
[17] |
M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the povzner-boltzmann equation,, Physica D: Nonlinear Phenomena, 240 (2011), 21.
doi: 10.1016/j.physd.2010.08.003. |
[18] |
D. Gillespie, "Markov Processes, An Introduction for Physical Scientists,'', Academic Press, (1992).
|
[19] |
S. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinetic and Related Models, 1 (2008), 415.
|
[20] |
P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: fifty years after Kramers,, Reviews of Modern Physics, 62 (1990), 251.
doi: 10.1103/RevModPhys.62.251. |
[21] |
J. Haskovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Journal of Statistical Physics, 135 (2009), 133.
doi: 10.1007/s10955-009-9717-1. |
[22] |
J. Haskovec and C. Schmeiser, Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Communications in Partial Differential Equations, 36 (2011), 940.
doi: 10.1080/03605302.2010.538783. |
[23] |
N. Hill and D. Häder, A biased random walk model for the trajectories of swimming micro-organisms,, Journal of Theoretical Biology, 186 (1997), 503.
doi: 10.1006/jtbi.1997.0421. |
[24] |
M. Kac, A stochastic model related to the telegrapher's equation,, Rocky Mountain Journal of Mathematics, 4 (1974), 497.
|
[25] |
H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems,, Journal of Mathematical Biology, 26 (1988), 263.
doi: 10.1007/BF00277392. |
[26] |
W. Rudin, "Functional Analysis,'', McGraw-Hill Science, (1991).
|
[27] |
A. Sznitman, "Topics in Propagation of Chaos,'', Lecture notes in mathematics, 1464 (1991).
|
[28] |
N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', $3^{rd}$ edition, (2007). Google Scholar |
[29] |
C. Yates, R. Erban, C. Escudero, I. Couzin, J. Buhl, I. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion,, Proceedings of the National Academy of Sciences USA, 106 (2009), 5464.
doi: 10.1073/pnas.0811195106. |
[1] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[2] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[3] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[4] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[5] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[6] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[7] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[8] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[9] |
Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046 |
[10] |
Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025 |
[11] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[12] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[13] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[14] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[15] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[16] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[17] |
Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047 |
[18] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[19] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[20] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]