December  2012, 5(4): 817-842. doi: 10.3934/krm.2012.5.817

From individual to collective behaviour of coupled velocity jump processes: A locust example

1. 

University of Oxford, Mathematical Institute, 24-29 St Giles', Oxford, OX1 3LB

2. 

King Abdullah University of Science and Technology, Computer, Electrical and Mathematical Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia

Received  September 2011 Revised  August 2012 Published  November 2012

A class of stochastic individual-based models, written in terms of coupled velocity jump processes, is presented and analysed. This modelling approach incorporates recent experimental findings on the behaviour of locusts. It exhibits nontrivial dynamics with a pitchfork bifurcation and recovers the observed group directional switching. Estimates of the expected switching times, in terms of the number of individuals and values of the model coefficients, are obtained using the corresponding Fokker-Planck equation. In the limit of large populations, a system of two kinetic equations (with nonlocal and nonlinear right hand side) is derived and analyzed. The existence of its solutions is proven and the system's long-time behaviour is investigated. Finally, a first step towards the mean field limit of topological interactions is made by studying the effect of shrinking the interaction radius in the individual-based model.
Citation: Radek Erban, Jan Haskovec. From individual to collective behaviour of coupled velocity jump processes: A locust example. Kinetic & Related Models, 2012, 5 (4) : 817-842. doi: 10.3934/krm.2012.5.817
References:
[1]

L. Baum and M. Katz, Convergence rates in the law of large numbers,, Transactions of the American Mathematical Society, 120 (1965), 108.  doi: 10.1090/S0002-9947-1965-0198524-1.  Google Scholar

[2]

S. Bazazi, J. Buhl, J. Hale, M. Anstey, G. Sword, S. Simpson and I. Couzin, Collective motion and cannibalism in locust migratory bands,, Current Biology, 18 (2008), 735.  doi: 10.1016/j.cub.2008.04.035.  Google Scholar

[3]

J. Buhl, D. Sumpter, I. Couzin, J. Hale, E. Despland, E. Miller and S. Simpson, From disorder to order in marching locusts,, Science, 312 (2006), 1402.  doi: 10.1126/science.1125142.  Google Scholar

[4]

J. Buhl, G. Sword, F. Clissold and S. Simpson, Group structure in locust migratory bands,, Behav. Ecol. Sociobiol., 65 (2011), 265.  doi: 10.1007/s00265-010-1041-x.  Google Scholar

[5]

J. Carrillo, M. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.   Google Scholar

[6]

J. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM Journal on Mathematical Analysis, 42 (2010), 218.  doi: 10.1137/090757290.  Google Scholar

[7]

J. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, hydrodynamic models of swarming,, in, (2010), 297.   Google Scholar

[8]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,'', Applied Mathematical Sciences, 106 (1994).   Google Scholar

[9]

E. Codling and N. Hill, Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters,, Journal of Mathematical Biology, 51 (2005), 527.  doi: 10.1007/s00285-005-0317-7.  Google Scholar

[10]

A. Czirók, A. Barabási and T. Vicsek, Collective motion of self-propelled particles: Kinetic phase transition in one dimension,, Physical Review Letters, 82 (1999), 209.  doi: 10.1103/PhysRevLett.82.209.  Google Scholar

[11]

R. Erban, I. Kevrekidis, D. Adalsteinsson and T. Elston, Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation,, Journal of Chemical Physics, 124 (2006).   Google Scholar

[12]

R. Erban and H. Othmer, From individual to collective behaviour in bacterial chemotaxis,, SIAM Journal on Applied Mathematics, 65 (2004), 361.  doi: 10.1137/S0036139903433232.  Google Scholar

[13]

R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multi-scale modeling in biology>,, Multiscale Modeling and Simulation, 3 (2005), 362.   Google Scholar

[14]

C. Escudero, C. Yates, J. Buhl, I. Couzin, R. Erban, I. Kevrekidis and P. Maini, Ergodic directional switching in mobile insect groups,, Physical Review E, 82 (2010).   Google Scholar

[15]

L. Evans, "Partial Differential Equations,'', American Mathematical Society, (1998).   Google Scholar

[16]

W. Feller, "An Introduction to Probability Theory and its Applications,'', $3^{rd}$ edition, (1967).   Google Scholar

[17]

M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the povzner-boltzmann equation,, Physica D: Nonlinear Phenomena, 240 (2011), 21.  doi: 10.1016/j.physd.2010.08.003.  Google Scholar

[18]

D. Gillespie, "Markov Processes, An Introduction for Physical Scientists,'', Academic Press, (1992).   Google Scholar

[19]

S. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinetic and Related Models, 1 (2008), 415.   Google Scholar

[20]

P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: fifty years after Kramers,, Reviews of Modern Physics, 62 (1990), 251.  doi: 10.1103/RevModPhys.62.251.  Google Scholar

[21]

J. Haskovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Journal of Statistical Physics, 135 (2009), 133.  doi: 10.1007/s10955-009-9717-1.  Google Scholar

[22]

J. Haskovec and C. Schmeiser, Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Communications in Partial Differential Equations, 36 (2011), 940.  doi: 10.1080/03605302.2010.538783.  Google Scholar

[23]

N. Hill and D. Häder, A biased random walk model for the trajectories of swimming micro-organisms,, Journal of Theoretical Biology, 186 (1997), 503.  doi: 10.1006/jtbi.1997.0421.  Google Scholar

[24]

M. Kac, A stochastic model related to the telegrapher's equation,, Rocky Mountain Journal of Mathematics, 4 (1974), 497.   Google Scholar

[25]

H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems,, Journal of Mathematical Biology, 26 (1988), 263.  doi: 10.1007/BF00277392.  Google Scholar

[26]

W. Rudin, "Functional Analysis,'', McGraw-Hill Science, (1991).   Google Scholar

[27]

A. Sznitman, "Topics in Propagation of Chaos,'', Lecture notes in mathematics, 1464 (1991).   Google Scholar

[28]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', $3^{rd}$ edition, (2007).   Google Scholar

[29]

C. Yates, R. Erban, C. Escudero, I. Couzin, J. Buhl, I. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion,, Proceedings of the National Academy of Sciences USA, 106 (2009), 5464.  doi: 10.1073/pnas.0811195106.  Google Scholar

show all references

References:
[1]

L. Baum and M. Katz, Convergence rates in the law of large numbers,, Transactions of the American Mathematical Society, 120 (1965), 108.  doi: 10.1090/S0002-9947-1965-0198524-1.  Google Scholar

[2]

S. Bazazi, J. Buhl, J. Hale, M. Anstey, G. Sword, S. Simpson and I. Couzin, Collective motion and cannibalism in locust migratory bands,, Current Biology, 18 (2008), 735.  doi: 10.1016/j.cub.2008.04.035.  Google Scholar

[3]

J. Buhl, D. Sumpter, I. Couzin, J. Hale, E. Despland, E. Miller and S. Simpson, From disorder to order in marching locusts,, Science, 312 (2006), 1402.  doi: 10.1126/science.1125142.  Google Scholar

[4]

J. Buhl, G. Sword, F. Clissold and S. Simpson, Group structure in locust migratory bands,, Behav. Ecol. Sociobiol., 65 (2011), 265.  doi: 10.1007/s00265-010-1041-x.  Google Scholar

[5]

J. Carrillo, M. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.   Google Scholar

[6]

J. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM Journal on Mathematical Analysis, 42 (2010), 218.  doi: 10.1137/090757290.  Google Scholar

[7]

J. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, hydrodynamic models of swarming,, in, (2010), 297.   Google Scholar

[8]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,'', Applied Mathematical Sciences, 106 (1994).   Google Scholar

[9]

E. Codling and N. Hill, Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters,, Journal of Mathematical Biology, 51 (2005), 527.  doi: 10.1007/s00285-005-0317-7.  Google Scholar

[10]

A. Czirók, A. Barabási and T. Vicsek, Collective motion of self-propelled particles: Kinetic phase transition in one dimension,, Physical Review Letters, 82 (1999), 209.  doi: 10.1103/PhysRevLett.82.209.  Google Scholar

[11]

R. Erban, I. Kevrekidis, D. Adalsteinsson and T. Elston, Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation,, Journal of Chemical Physics, 124 (2006).   Google Scholar

[12]

R. Erban and H. Othmer, From individual to collective behaviour in bacterial chemotaxis,, SIAM Journal on Applied Mathematics, 65 (2004), 361.  doi: 10.1137/S0036139903433232.  Google Scholar

[13]

R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multi-scale modeling in biology>,, Multiscale Modeling and Simulation, 3 (2005), 362.   Google Scholar

[14]

C. Escudero, C. Yates, J. Buhl, I. Couzin, R. Erban, I. Kevrekidis and P. Maini, Ergodic directional switching in mobile insect groups,, Physical Review E, 82 (2010).   Google Scholar

[15]

L. Evans, "Partial Differential Equations,'', American Mathematical Society, (1998).   Google Scholar

[16]

W. Feller, "An Introduction to Probability Theory and its Applications,'', $3^{rd}$ edition, (1967).   Google Scholar

[17]

M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the povzner-boltzmann equation,, Physica D: Nonlinear Phenomena, 240 (2011), 21.  doi: 10.1016/j.physd.2010.08.003.  Google Scholar

[18]

D. Gillespie, "Markov Processes, An Introduction for Physical Scientists,'', Academic Press, (1992).   Google Scholar

[19]

S. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinetic and Related Models, 1 (2008), 415.   Google Scholar

[20]

P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: fifty years after Kramers,, Reviews of Modern Physics, 62 (1990), 251.  doi: 10.1103/RevModPhys.62.251.  Google Scholar

[21]

J. Haskovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Journal of Statistical Physics, 135 (2009), 133.  doi: 10.1007/s10955-009-9717-1.  Google Scholar

[22]

J. Haskovec and C. Schmeiser, Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Communications in Partial Differential Equations, 36 (2011), 940.  doi: 10.1080/03605302.2010.538783.  Google Scholar

[23]

N. Hill and D. Häder, A biased random walk model for the trajectories of swimming micro-organisms,, Journal of Theoretical Biology, 186 (1997), 503.  doi: 10.1006/jtbi.1997.0421.  Google Scholar

[24]

M. Kac, A stochastic model related to the telegrapher's equation,, Rocky Mountain Journal of Mathematics, 4 (1974), 497.   Google Scholar

[25]

H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems,, Journal of Mathematical Biology, 26 (1988), 263.  doi: 10.1007/BF00277392.  Google Scholar

[26]

W. Rudin, "Functional Analysis,'', McGraw-Hill Science, (1991).   Google Scholar

[27]

A. Sznitman, "Topics in Propagation of Chaos,'', Lecture notes in mathematics, 1464 (1991).   Google Scholar

[28]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', $3^{rd}$ edition, (2007).   Google Scholar

[29]

C. Yates, R. Erban, C. Escudero, I. Couzin, J. Buhl, I. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion,, Proceedings of the National Academy of Sciences USA, 106 (2009), 5464.  doi: 10.1073/pnas.0811195106.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[3]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[4]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[5]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[6]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[7]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[8]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[9]

Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046

[10]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[13]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[14]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[15]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[16]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[17]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[18]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[19]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[20]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]