December  2012, 5(4): 857-872. doi: 10.3934/krm.2012.5.857

Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities

1. 

Research Institute of Nonlinear Partial Differential Equations, Organization for University Research Initiatives, Waseda University, 3-4-1 Ohkubo Shinjuku, Tokyo 169-8555, Japan

Received  April 2012 Revised  August 2012 Published  November 2012

The present paper is concerned with the asymptotic behavior of a discontinuous solution to a model system of radiating gas. As we assume that an initial data has a discontinuity only at one point, so does the solution. Here the discontinuous solution is supposed to satisfy an entropy condition in the sense of Kruzkov. Previous researches have shown that the solution converges uniformly to a traveling wave if an initial perturbation is integrable and is small in the suitable Sobolev space. If its anti-derivative is also integrable, the convergence rate is known to be $(1+t)^{-1/4}$ as time $t$ tends to infinity. In the present paper, we improve the previous result and show that the convergence rate is exactly the same as the spatial decay rate of the initial perturbation.
Citation: Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic and Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857
References:
[1]

R. Duan, K. Fellner and C. Zhu, Energy method for multi-dimensional balance laws with non-local dissipation, J. Math. Pures Appl., 93 (2010), 572-598. doi: 10.1016/j.matpur.2009.10.007.

[2]

W. Gao, L. Ruan and C. Zhu, Decay rates to the planar rarefaction waves for a model system of the radiating gas in $n$ dimensions J. Differential Equations, 244 (2008), 2614-2640. doi: 10.1016/j.jde.2008.02.023.

[3]

K. Hamer, Nonlinear effects on the propagation of sounds waves in a radiating gas, Quarter J. Mech. Appl. Math., 24 (1971), 155-168. doi: 10.1093/qjmam/24.2.155.

[4]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97-127. doi: 10.1007/BF01212358.

[5]

S. Kawashima and S. Nishibata, Weak solutions with a shock to a model system of the radiating gas, Sci. Bull. Josai Univ. special issue, 5 (1998), 119-130.

[6]

S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gas, SIAM J. Math. Anal., 30 (1999), 95-117. doi: 10.1137/S0036141097322169.

[7]

S. Kawashima and S. Nishibata, Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions, Math. Models. Meth. Sci., 9 (1999), 69-91.

[8]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500.

[9]

S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of radiating gas, Kyushu J. Math., 58 (2004), 211-250. doi: 10.2206/kyushujm.58.211.

[10]

S. N. Kruzkov, First order quasilinear equations in several independent variables, Math. USSR Sbor., 10 (1970), 217-243. doi: 10.1070/SM1970v010n02ABEH002156.

[11]

C. Lattanzio, C. Mascia, T. Nguyen, R. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009), 2165-2206. doi: 10.1137/09076026X.

[12]

A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity, Commun. Math. Phys., 165 (1994), 83-96. doi: 10.1007/BF02099739.

[13]

S. Nishibata, Asymptotic behavior of solutions to a model system of radiating gas with discontinuous initial data, Math. Models. Meth. Appl. Sci., 8 (2000), 1209-1231.

[14]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcialaj Ekvacioj, 41 (1998), 107-132.

[15]

M. Nishikawa and S. Nishibata, Convergence rates toward the traveling waves for a model system of the radiating gas, Math. Meth. Appl. Sci., 30 (2007), 649-663. doi: 10.1002/mma.800.

[16]

D. Serre, $L^1$-stability of constants in a model for radiating gases, Comm. Math. Sci., 1 (2003), 197-205.

[17]

M. Suzuki, Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics, Kinetic Related Models, 4 (2011), 569-588.

[18]

W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions, Nonlinear Anal., 71 (2009), 1180-1195. doi: 10.1016/j.na.2008.11.050.

show all references

References:
[1]

R. Duan, K. Fellner and C. Zhu, Energy method for multi-dimensional balance laws with non-local dissipation, J. Math. Pures Appl., 93 (2010), 572-598. doi: 10.1016/j.matpur.2009.10.007.

[2]

W. Gao, L. Ruan and C. Zhu, Decay rates to the planar rarefaction waves for a model system of the radiating gas in $n$ dimensions J. Differential Equations, 244 (2008), 2614-2640. doi: 10.1016/j.jde.2008.02.023.

[3]

K. Hamer, Nonlinear effects on the propagation of sounds waves in a radiating gas, Quarter J. Mech. Appl. Math., 24 (1971), 155-168. doi: 10.1093/qjmam/24.2.155.

[4]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97-127. doi: 10.1007/BF01212358.

[5]

S. Kawashima and S. Nishibata, Weak solutions with a shock to a model system of the radiating gas, Sci. Bull. Josai Univ. special issue, 5 (1998), 119-130.

[6]

S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gas, SIAM J. Math. Anal., 30 (1999), 95-117. doi: 10.1137/S0036141097322169.

[7]

S. Kawashima and S. Nishibata, Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions, Math. Models. Meth. Sci., 9 (1999), 69-91.

[8]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500.

[9]

S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of radiating gas, Kyushu J. Math., 58 (2004), 211-250. doi: 10.2206/kyushujm.58.211.

[10]

S. N. Kruzkov, First order quasilinear equations in several independent variables, Math. USSR Sbor., 10 (1970), 217-243. doi: 10.1070/SM1970v010n02ABEH002156.

[11]

C. Lattanzio, C. Mascia, T. Nguyen, R. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009), 2165-2206. doi: 10.1137/09076026X.

[12]

A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity, Commun. Math. Phys., 165 (1994), 83-96. doi: 10.1007/BF02099739.

[13]

S. Nishibata, Asymptotic behavior of solutions to a model system of radiating gas with discontinuous initial data, Math. Models. Meth. Appl. Sci., 8 (2000), 1209-1231.

[14]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcialaj Ekvacioj, 41 (1998), 107-132.

[15]

M. Nishikawa and S. Nishibata, Convergence rates toward the traveling waves for a model system of the radiating gas, Math. Meth. Appl. Sci., 30 (2007), 649-663. doi: 10.1002/mma.800.

[16]

D. Serre, $L^1$-stability of constants in a model for radiating gases, Comm. Math. Sci., 1 (2003), 197-205.

[17]

M. Suzuki, Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics, Kinetic Related Models, 4 (2011), 569-588.

[18]

W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions, Nonlinear Anal., 71 (2009), 1180-1195. doi: 10.1016/j.na.2008.11.050.

[1]

N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079

[2]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations and Control Theory, 2022, 11 (1) : 199-224. doi: 10.3934/eect.2020108

[3]

Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1 (4) : 639-673. doi: 10.3934/nhm.2006.1.639

[4]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control and Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[5]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[6]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[7]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[8]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[9]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic and Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[10]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

[11]

Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control and Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049

[12]

Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial and Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199

[13]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic and Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[14]

Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569

[15]

Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[18]

Jiequn Han, Jihao Long. Convergence of the deep BSDE method for coupled FBSDEs. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 5-. doi: 10.1186/s41546-020-00047-w

[19]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[20]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]