-
Previous Article
An age-structured two-sex model in the space of radon measures: Well posedness
- KRM Home
- This Issue
-
Next Article
Coupling of non-local driving behaviour with fundamental diagrams
Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities
1. | Research Institute of Nonlinear Partial Differential Equations, Organization for University Research Initiatives, Waseda University, 3-4-1 Ohkubo Shinjuku, Tokyo 169-8555, Japan |
References:
[1] |
R. Duan, K. Fellner and C. Zhu, Energy method for multi-dimensional balance laws with non-local dissipation,, J. Math. Pures Appl., 93 (2010), 572.
doi: 10.1016/j.matpur.2009.10.007. |
[2] |
W. Gao, L. Ruan and C. Zhu, Decay rates to the planar rarefaction waves for a model system of the radiating gas in $n$ dimensions, J. Differential Equations, 244 (2008), 2614.
doi: 10.1016/j.jde.2008.02.023. |
[3] |
K. Hamer, Nonlinear effects on the propagation of sounds waves in a radiating gas,, Quarter J. Mech. Appl. Math., 24 (1971), 155.
doi: 10.1093/qjmam/24.2.155. |
[4] |
S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.
doi: 10.1007/BF01212358. |
[5] |
S. Kawashima and S. Nishibata, Weak solutions with a shock to a model system of the radiating gas,, Sci. Bull. Josai Univ. special issue, 5 (1998), 119.
|
[6] |
S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gas,, SIAM J. Math. Anal., 30 (1999), 95.
doi: 10.1137/S0036141097322169. |
[7] |
S. Kawashima and S. Nishibata, Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions,, Math. Models. Meth. Sci., 9 (1999), 69.
|
[8] |
S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483.
|
[9] |
S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of radiating gas,, Kyushu J. Math., 58 (2004), 211.
doi: 10.2206/kyushujm.58.211. |
[10] |
S. N. Kruzkov, First order quasilinear equations in several independent variables,, Math. USSR Sbor., 10 (1970), 217.
doi: 10.1070/SM1970v010n02ABEH002156. |
[11] |
C. Lattanzio, C. Mascia, T. Nguyen, R. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles,, SIAM J. Math. Anal., 41 (2009), 2165.
doi: 10.1137/09076026X. |
[12] |
A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity,, Commun. Math. Phys., 165 (1994), 83.
doi: 10.1007/BF02099739. |
[13] |
S. Nishibata, Asymptotic behavior of solutions to a model system of radiating gas with discontinuous initial data,, Math. Models. Meth. Appl. Sci., 8 (2000), 1209.
|
[14] |
M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcialaj Ekvacioj, 41 (1998), 107.
|
[15] |
M. Nishikawa and S. Nishibata, Convergence rates toward the traveling waves for a model system of the radiating gas,, Math. Meth. Appl. Sci., 30 (2007), 649.
doi: 10.1002/mma.800. |
[16] |
D. Serre, $L^1$-stability of constants in a model for radiating gases,, Comm. Math. Sci., 1 (2003), 197.
|
[17] |
M. Suzuki, Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics,, Kinetic Related Models, 4 (2011), 569.
|
[18] |
W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions,, Nonlinear Anal., 71 (2009), 1180.
doi: 10.1016/j.na.2008.11.050. |
show all references
References:
[1] |
R. Duan, K. Fellner and C. Zhu, Energy method for multi-dimensional balance laws with non-local dissipation,, J. Math. Pures Appl., 93 (2010), 572.
doi: 10.1016/j.matpur.2009.10.007. |
[2] |
W. Gao, L. Ruan and C. Zhu, Decay rates to the planar rarefaction waves for a model system of the radiating gas in $n$ dimensions, J. Differential Equations, 244 (2008), 2614.
doi: 10.1016/j.jde.2008.02.023. |
[3] |
K. Hamer, Nonlinear effects on the propagation of sounds waves in a radiating gas,, Quarter J. Mech. Appl. Math., 24 (1971), 155.
doi: 10.1093/qjmam/24.2.155. |
[4] |
S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.
doi: 10.1007/BF01212358. |
[5] |
S. Kawashima and S. Nishibata, Weak solutions with a shock to a model system of the radiating gas,, Sci. Bull. Josai Univ. special issue, 5 (1998), 119.
|
[6] |
S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gas,, SIAM J. Math. Anal., 30 (1999), 95.
doi: 10.1137/S0036141097322169. |
[7] |
S. Kawashima and S. Nishibata, Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions,, Math. Models. Meth. Sci., 9 (1999), 69.
|
[8] |
S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483.
|
[9] |
S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of radiating gas,, Kyushu J. Math., 58 (2004), 211.
doi: 10.2206/kyushujm.58.211. |
[10] |
S. N. Kruzkov, First order quasilinear equations in several independent variables,, Math. USSR Sbor., 10 (1970), 217.
doi: 10.1070/SM1970v010n02ABEH002156. |
[11] |
C. Lattanzio, C. Mascia, T. Nguyen, R. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles,, SIAM J. Math. Anal., 41 (2009), 2165.
doi: 10.1137/09076026X. |
[12] |
A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity,, Commun. Math. Phys., 165 (1994), 83.
doi: 10.1007/BF02099739. |
[13] |
S. Nishibata, Asymptotic behavior of solutions to a model system of radiating gas with discontinuous initial data,, Math. Models. Meth. Appl. Sci., 8 (2000), 1209.
|
[14] |
M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcialaj Ekvacioj, 41 (1998), 107.
|
[15] |
M. Nishikawa and S. Nishibata, Convergence rates toward the traveling waves for a model system of the radiating gas,, Math. Meth. Appl. Sci., 30 (2007), 649.
doi: 10.1002/mma.800. |
[16] |
D. Serre, $L^1$-stability of constants in a model for radiating gases,, Comm. Math. Sci., 1 (2003), 197.
|
[17] |
M. Suzuki, Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics,, Kinetic Related Models, 4 (2011), 569.
|
[18] |
W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions,, Nonlinear Anal., 71 (2009), 1180.
doi: 10.1016/j.na.2008.11.050. |
[1] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[2] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[3] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[4] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[5] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[6] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[7] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[8] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[9] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[10] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[11] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[12] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[13] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[14] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[15] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[16] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[17] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[18] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[19] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[20] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]