December  2012, 5(4): 857-872. doi: 10.3934/krm.2012.5.857

Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities

1. 

Research Institute of Nonlinear Partial Differential Equations, Organization for University Research Initiatives, Waseda University, 3-4-1 Ohkubo Shinjuku, Tokyo 169-8555, Japan

Received  April 2012 Revised  August 2012 Published  November 2012

The present paper is concerned with the asymptotic behavior of a discontinuous solution to a model system of radiating gas. As we assume that an initial data has a discontinuity only at one point, so does the solution. Here the discontinuous solution is supposed to satisfy an entropy condition in the sense of Kruzkov. Previous researches have shown that the solution converges uniformly to a traveling wave if an initial perturbation is integrable and is small in the suitable Sobolev space. If its anti-derivative is also integrable, the convergence rate is known to be $(1+t)^{-1/4}$ as time $t$ tends to infinity. In the present paper, we improve the previous result and show that the convergence rate is exactly the same as the spatial decay rate of the initial perturbation.
Citation: Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857
References:
[1]

R. Duan, K. Fellner and C. Zhu, Energy method for multi-dimensional balance laws with non-local dissipation,, J. Math. Pures Appl., 93 (2010), 572.  doi: 10.1016/j.matpur.2009.10.007.  Google Scholar

[2]

W. Gao, L. Ruan and C. Zhu, Decay rates to the planar rarefaction waves for a model system of the radiating gas in $n$ dimensions, J. Differential Equations, 244 (2008), 2614.  doi: 10.1016/j.jde.2008.02.023.  Google Scholar

[3]

K. Hamer, Nonlinear effects on the propagation of sounds waves in a radiating gas,, Quarter J. Mech. Appl. Math., 24 (1971), 155.  doi: 10.1093/qjmam/24.2.155.  Google Scholar

[4]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[5]

S. Kawashima and S. Nishibata, Weak solutions with a shock to a model system of the radiating gas,, Sci. Bull. Josai Univ. special issue, 5 (1998), 119.   Google Scholar

[6]

S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gas,, SIAM J. Math. Anal., 30 (1999), 95.  doi: 10.1137/S0036141097322169.  Google Scholar

[7]

S. Kawashima and S. Nishibata, Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions,, Math. Models. Meth. Sci., 9 (1999), 69.   Google Scholar

[8]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483.   Google Scholar

[9]

S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of radiating gas,, Kyushu J. Math., 58 (2004), 211.  doi: 10.2206/kyushujm.58.211.  Google Scholar

[10]

S. N. Kruzkov, First order quasilinear equations in several independent variables,, Math. USSR Sbor., 10 (1970), 217.  doi: 10.1070/SM1970v010n02ABEH002156.  Google Scholar

[11]

C. Lattanzio, C. Mascia, T. Nguyen, R. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles,, SIAM J. Math. Anal., 41 (2009), 2165.  doi: 10.1137/09076026X.  Google Scholar

[12]

A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity,, Commun. Math. Phys., 165 (1994), 83.  doi: 10.1007/BF02099739.  Google Scholar

[13]

S. Nishibata, Asymptotic behavior of solutions to a model system of radiating gas with discontinuous initial data,, Math. Models. Meth. Appl. Sci., 8 (2000), 1209.   Google Scholar

[14]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcialaj Ekvacioj, 41 (1998), 107.   Google Scholar

[15]

M. Nishikawa and S. Nishibata, Convergence rates toward the traveling waves for a model system of the radiating gas,, Math. Meth. Appl. Sci., 30 (2007), 649.  doi: 10.1002/mma.800.  Google Scholar

[16]

D. Serre, $L^1$-stability of constants in a model for radiating gases,, Comm. Math. Sci., 1 (2003), 197.   Google Scholar

[17]

M. Suzuki, Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics,, Kinetic Related Models, 4 (2011), 569.   Google Scholar

[18]

W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions,, Nonlinear Anal., 71 (2009), 1180.  doi: 10.1016/j.na.2008.11.050.  Google Scholar

show all references

References:
[1]

R. Duan, K. Fellner and C. Zhu, Energy method for multi-dimensional balance laws with non-local dissipation,, J. Math. Pures Appl., 93 (2010), 572.  doi: 10.1016/j.matpur.2009.10.007.  Google Scholar

[2]

W. Gao, L. Ruan and C. Zhu, Decay rates to the planar rarefaction waves for a model system of the radiating gas in $n$ dimensions, J. Differential Equations, 244 (2008), 2614.  doi: 10.1016/j.jde.2008.02.023.  Google Scholar

[3]

K. Hamer, Nonlinear effects on the propagation of sounds waves in a radiating gas,, Quarter J. Mech. Appl. Math., 24 (1971), 155.  doi: 10.1093/qjmam/24.2.155.  Google Scholar

[4]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[5]

S. Kawashima and S. Nishibata, Weak solutions with a shock to a model system of the radiating gas,, Sci. Bull. Josai Univ. special issue, 5 (1998), 119.   Google Scholar

[6]

S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gas,, SIAM J. Math. Anal., 30 (1999), 95.  doi: 10.1137/S0036141097322169.  Google Scholar

[7]

S. Kawashima and S. Nishibata, Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions,, Math. Models. Meth. Sci., 9 (1999), 69.   Google Scholar

[8]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483.   Google Scholar

[9]

S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of radiating gas,, Kyushu J. Math., 58 (2004), 211.  doi: 10.2206/kyushujm.58.211.  Google Scholar

[10]

S. N. Kruzkov, First order quasilinear equations in several independent variables,, Math. USSR Sbor., 10 (1970), 217.  doi: 10.1070/SM1970v010n02ABEH002156.  Google Scholar

[11]

C. Lattanzio, C. Mascia, T. Nguyen, R. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles,, SIAM J. Math. Anal., 41 (2009), 2165.  doi: 10.1137/09076026X.  Google Scholar

[12]

A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity,, Commun. Math. Phys., 165 (1994), 83.  doi: 10.1007/BF02099739.  Google Scholar

[13]

S. Nishibata, Asymptotic behavior of solutions to a model system of radiating gas with discontinuous initial data,, Math. Models. Meth. Appl. Sci., 8 (2000), 1209.   Google Scholar

[14]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcialaj Ekvacioj, 41 (1998), 107.   Google Scholar

[15]

M. Nishikawa and S. Nishibata, Convergence rates toward the traveling waves for a model system of the radiating gas,, Math. Meth. Appl. Sci., 30 (2007), 649.  doi: 10.1002/mma.800.  Google Scholar

[16]

D. Serre, $L^1$-stability of constants in a model for radiating gases,, Comm. Math. Sci., 1 (2003), 197.   Google Scholar

[17]

M. Suzuki, Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics,, Kinetic Related Models, 4 (2011), 569.   Google Scholar

[18]

W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions,, Nonlinear Anal., 71 (2009), 1180.  doi: 10.1016/j.na.2008.11.050.  Google Scholar

[1]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[4]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[5]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[6]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[7]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[8]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[9]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[10]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[11]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[12]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[13]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[14]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[15]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[16]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[19]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[20]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]