March  2012, 5(1): 97-112. doi: 10.3934/krm.2012.5.97

A smooth 3D model for fiber lay-down in nonwoven production processes

1. 

Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany, Germany

2. 

Fraunhofer ITWM, Kaiserslautern, Germany

Received  March 2011 Revised  August 2011 Published  January 2012

In this paper we develop an improved three dimensional stochastic model for the lay-down of fibers on a moving conveyor belt in the production process of nonwoven materials. The model removes a drawback of a previous 3D model, that is the non-smoothness of the fiber paths. A similar result in the 2D case has been presented in [12]. The resulting equations are investigated for different limit situations and numerical simulations are presented.
Citation: Axel Klar, Johannes Maringer, Raimund Wegener. A smooth 3D model for fiber lay-down in nonwoven production processes. Kinetic & Related Models, 2012, 5 (1) : 97-112. doi: 10.3934/krm.2012.5.97
References:
[1]

W. Albrecht, H. Fuchs and W. Kittelmann, "Nonwoven Fabrics,", Wiley, (2003).   Google Scholar

[2]

L. Arnold, "Stochastic Differential Equations,", Springer, (1978).   Google Scholar

[3]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in Mathematics and its Applications, 5 (1978).   Google Scholar

[4]

L. Bonilla and T. Götz, A. Klar, N. Marheineke and R. Wegener, Hydrodynamic limit of a Fokker-Planck equation describing fiber lay-down processes,, SIAM J. Appl. Math., 68 (): 648.  doi: 10.1137/070692728.  Google Scholar

[5]

J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes,, J. Comp. Phys., 227 (2008), 7929.  doi: 10.1016/j.jcp.2008.05.002.  Google Scholar

[6]

P. Degond and S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior,, J. Stat. Phys., 131 (2008), 989.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[7]

J. Dolbeault, A. Klar, C. Mouhot and C. Schmeiser, Hypocoercivity and a Fokker-Planck equation for fiber lay-down,, preprint., ().   Google Scholar

[8]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms,, C. R. Acad. Sci. Paris, 347 (2009), 511.   Google Scholar

[9]

T. Götz, A. Klar, N. Marheineke and R. Wegener, A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes,, SIAM J. Appl. Math., 67 (2007), 1704.  doi: 10.1137/06067715X.  Google Scholar

[10]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case,, Math. Models Methods Appl. Sci., 15 (2005), 737.  doi: 10.1142/S021820250500056X.  Google Scholar

[11]

J. W. Hearle, M. A. Sultan and S. Govender, The form taken by threads laid on a moving belt, Part I-III,, Journal of the Textile Institute, 67 (1976), 373.  doi: 10.1080/00405007608630170.  Google Scholar

[12]

M. Herty, A. Klar, S. Motsch and F. Olawsky, A smooth model for fiber lay-down processes and its diffusion approximations,, KRM, 2 (2009), 489.  doi: 10.3934/krm.2009.2.489.  Google Scholar

[13]

A. Klar, N. Marheineke and R. Wegener, Hierarchy of mathematical models for production processes of technical textiles,, ZAMM Z. Angew. Math. Mech., 89 (2009), 941.  doi: 10.1002/zamm.200900282.  Google Scholar

[14]

A. Klar, J. Maringer and R. Wegener, A 3D model for fiber lay-down processes in non-woven production processes,, to appear in MMMAS., ().   Google Scholar

[15]

Y. Kutoyantz, "Statistical Inference for Ergodic Diffusion Processes,", Springer, (2004).   Google Scholar

[16]

L. Mahadevan and J. B. Keller, Coiling of flexible ropes,, Proc. R. Soc. Lond. Ser. A, 452 (1996), 1679.  doi: 10.1098/rspa.1996.0089.  Google Scholar

[17]

N. Marheineke and R. Wegener, Fiber dynamics in turbulent flows: General modeling framework,, SIAM J. Appl. Math., 66 (2006), 1703.  doi: 10.1137/050637182.  Google Scholar

[18]

N. Marheineke and R. Wegener, Modeling and application of a stochastic drag for fibers in turbulent flows,, International Journal of Multiphase Flow, 37 (2011), 136.  doi: 10.1016/j.ijmultiphaseflow.2010.10.001.  Google Scholar

[19]

E. Nelson, "Dynamical Theories of Brownian Motion,", Princeton University Press, (1967).   Google Scholar

[20]

M. R. D'Orsogna, V. Panferov and J. A. Carrillo, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.  doi: 10.3934/krm.2009.2.363.  Google Scholar

show all references

References:
[1]

W. Albrecht, H. Fuchs and W. Kittelmann, "Nonwoven Fabrics,", Wiley, (2003).   Google Scholar

[2]

L. Arnold, "Stochastic Differential Equations,", Springer, (1978).   Google Scholar

[3]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in Mathematics and its Applications, 5 (1978).   Google Scholar

[4]

L. Bonilla and T. Götz, A. Klar, N. Marheineke and R. Wegener, Hydrodynamic limit of a Fokker-Planck equation describing fiber lay-down processes,, SIAM J. Appl. Math., 68 (): 648.  doi: 10.1137/070692728.  Google Scholar

[5]

J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes,, J. Comp. Phys., 227 (2008), 7929.  doi: 10.1016/j.jcp.2008.05.002.  Google Scholar

[6]

P. Degond and S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior,, J. Stat. Phys., 131 (2008), 989.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[7]

J. Dolbeault, A. Klar, C. Mouhot and C. Schmeiser, Hypocoercivity and a Fokker-Planck equation for fiber lay-down,, preprint., ().   Google Scholar

[8]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms,, C. R. Acad. Sci. Paris, 347 (2009), 511.   Google Scholar

[9]

T. Götz, A. Klar, N. Marheineke and R. Wegener, A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes,, SIAM J. Appl. Math., 67 (2007), 1704.  doi: 10.1137/06067715X.  Google Scholar

[10]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case,, Math. Models Methods Appl. Sci., 15 (2005), 737.  doi: 10.1142/S021820250500056X.  Google Scholar

[11]

J. W. Hearle, M. A. Sultan and S. Govender, The form taken by threads laid on a moving belt, Part I-III,, Journal of the Textile Institute, 67 (1976), 373.  doi: 10.1080/00405007608630170.  Google Scholar

[12]

M. Herty, A. Klar, S. Motsch and F. Olawsky, A smooth model for fiber lay-down processes and its diffusion approximations,, KRM, 2 (2009), 489.  doi: 10.3934/krm.2009.2.489.  Google Scholar

[13]

A. Klar, N. Marheineke and R. Wegener, Hierarchy of mathematical models for production processes of technical textiles,, ZAMM Z. Angew. Math. Mech., 89 (2009), 941.  doi: 10.1002/zamm.200900282.  Google Scholar

[14]

A. Klar, J. Maringer and R. Wegener, A 3D model for fiber lay-down processes in non-woven production processes,, to appear in MMMAS., ().   Google Scholar

[15]

Y. Kutoyantz, "Statistical Inference for Ergodic Diffusion Processes,", Springer, (2004).   Google Scholar

[16]

L. Mahadevan and J. B. Keller, Coiling of flexible ropes,, Proc. R. Soc. Lond. Ser. A, 452 (1996), 1679.  doi: 10.1098/rspa.1996.0089.  Google Scholar

[17]

N. Marheineke and R. Wegener, Fiber dynamics in turbulent flows: General modeling framework,, SIAM J. Appl. Math., 66 (2006), 1703.  doi: 10.1137/050637182.  Google Scholar

[18]

N. Marheineke and R. Wegener, Modeling and application of a stochastic drag for fibers in turbulent flows,, International Journal of Multiphase Flow, 37 (2011), 136.  doi: 10.1016/j.ijmultiphaseflow.2010.10.001.  Google Scholar

[19]

E. Nelson, "Dynamical Theories of Brownian Motion,", Princeton University Press, (1967).   Google Scholar

[20]

M. R. D'Orsogna, V. Panferov and J. A. Carrillo, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.  doi: 10.3934/krm.2009.2.363.  Google Scholar

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[3]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[4]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[5]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[6]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[7]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[8]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[9]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[10]

Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks & Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002

[11]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 741-754. doi: 10.3934/dcdss.2020041

[12]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[13]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[14]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[15]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[16]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[17]

Axel Klar, Florian Schneider, Oliver Tse. Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations. Kinetic & Related Models, 2014, 7 (3) : 509-529. doi: 10.3934/krm.2014.7.509

[18]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

[19]

Michael Herty, Axel Klar, Sébastien Motsch, Ferdinand Olawsky. A smooth model for fiber lay-down processes and its diffusion approximations. Kinetic & Related Models, 2009, 2 (3) : 489-502. doi: 10.3934/krm.2009.2.489

[20]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]