March  2013, 6(1): 1-135. doi: 10.3934/krm.2013.6.1

Mathematical theory and numerical methods for Bose-Einstein condensation

1. 

Department of Mathematics and Center for Computational Science and, Engineering, National University of Singapore, Singapore 119076, Singapore

2. 

Department of Mathematics, National University of Singapore, Singapore 119076; and Beijing Computational Science, Research Center, Beijing 100084, China

Received  September 2012 Revised  October 2012 Published  December 2012

In this paper, we mainly review recent results on mathematical theory and numerical methods for Bose-Einstein condensation (BEC), based on the Gross-Pitaevskii equation (GPE). Starting from the simplest case with one-component BEC of the weakly interacting bosons, we study the reduction of GPE to lower dimensions, the ground states of BEC including the existence and uniqueness as well as nonexistence results, and the dynamics of GPE including dynamical laws, well-posedness of the Cauchy problem as well as the finite time blow-up. To compute the ground state, the gradient flow with discrete normalization (or imaginary time) method is reviewed and various full discretization methods are presented and compared. To simulate the dynamics, both finite difference methods and time splitting spectral methods are reviewed, and their error estimates are briefly outlined. When the GPE has symmetric properties, we show how to simplify the numerical methods. Then we compare two widely used scalings, i.e. physical scaling (commonly used) and semiclassical scaling, for BEC in strong repulsive interaction regime (Thomas-Fermi regime), and discuss semiclassical limits of the GPE. Extensions of these results for one-component BEC are then carried out for rotating BEC by GPE with an angular momentum rotation, dipolar BEC by GPE with long range dipole-dipole interaction, and two-component BEC by coupled GPEs. Finally, as a perspective, we show briefly the mathematical models for spin-1 BEC, Bogoliubov excitation and BEC at finite temperature.
Citation: Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1
References:
[1]

J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates,, Science, 292 (2001), 476.  doi: 10.1126/science.1060182.  Google Scholar

[2]

S. K. Adhikari and P. Muruganandam, Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation,, J. Phys. B: At. Mol. Opt. Phys., 35 (2002), 2831.  doi: 10.1088/0953-4075/35/12/317.  Google Scholar

[3]

S. K. Adhikari and P. Muruganandam, Mean-field model for the interference of matter-waves from a three-dimensional optical trap,, Phys. Lett. A, 310 (2003), 229.  doi: 10.1016/S0375-9601(03)00335-9.  Google Scholar

[4]

A. Aftalion, "Vortices in Bose-Einstein Condensates,", Progress in Nonlinear Differential Equations and their Applications, 67 (2006).   Google Scholar

[5]

A. Aftalion and Q. Du, Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime,, Phys. Rev. A, 64 (2001).  doi: 10.1103/PhysRevA.64.063603.  Google Scholar

[6]

A. Aftalion, Q. Du and Y. Pomeau, Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose Einstein condensate,, Phys. Rev. Lett., 91 (2003).  doi: 10.1103/PhysRevLett.91.090407.  Google Scholar

[7]

A. Aftalion, R. Jerrard and J. Royo-Letelier, Non-existence of vortices in the small density region of a condensate,, J. Funct. Anal., 260 (2011), 2387.  doi: 10.1016/j.jfa.2010.12.003.  Google Scholar

[8]

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm and F. Ferlaino, Bose-Einstein condensation of Erbium,, Phys. Rev. Lett., 108 (2012).  doi: 10.1103/PhysRevLett.108.210401.  Google Scholar

[9]

G. Akrivis, Finite difference discretization of the cubic Schrödinger equation,, IMA J. Numer. Anal., 13 (1993), 115.  doi: 10.1093/imanum/13.1.115.  Google Scholar

[10]

G. Akrivis, V. Dougalis and O. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numer. Math., 59 (1991), 31.  doi: 10.1007/BF01385769.  Google Scholar

[11]

J. O. Andersen, Theory of the weakly interacting Bose gas,, Rev. Mod. Phys., 76 (2004), 599.  doi: 10.1103/RevModPhys.76.599.  Google Scholar

[12]

M. H. Anderson, J. R. Ensher, M. R. Matthewa, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,, Science, 269 (1995), 198.  doi: 10.1126/science.269.5221.198.  Google Scholar

[13]

P. Antonelli, D. Marahrens and C. Sparber, On the Cauchy problem for nonlinear Schrödinger equations with rotation,, Discrete Contin. Dyn. Syst., 32 (2012), 703.  doi: 10.3934/dcds.2012.32.703.  Google Scholar

[14]

W. Bao, The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics,, in, 9 (2007), 141.   Google Scholar

[15]

W. Bao, Ground states and dynamics of multicomponent Bose-Einstein condensates,, Multiscale Model. Simul., 2 (2004), 210.  doi: 10.1137/030600209.  Google Scholar

[16]

W. Bao, Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions,, Methods Appl. Anal., 11 (2004), 367.   Google Scholar

[17]

W. Bao, Analysis and efficient computation for the dynamics of two-component Bose-Einstein condensates: Stationary and time dependent Gross-Pitaevskii equations,, Contemp. Math., 473 (2008), 1.  doi: 10.1090/conm/473/09222.  Google Scholar

[18]

W. Bao, N. Ben Abdallah and Y. Cai, Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement,, SIAM J. Math. Anal., 44 (2012), 1713.  doi: 10.1137/110850451.  Google Scholar

[19]

W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction,, East Asia J. Appl. Math., 1 (2010), 49.   Google Scholar

[20]

W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator,, SIAM J Numer. Anal., 50 (2012), 492.  doi: 10.1137/110830800.  Google Scholar

[21]

W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation,, Math. Comp., 82 (2013), 99.   Google Scholar

[22]

W. Bao and Y. Cai, Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator,, preprint., ().   Google Scholar

[23]

W. Bao, Y. Cai and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates,, J. Comput. Phys., 229 (2010), 7874.  doi: 10.1016/j.jcp.2010.07.001.  Google Scholar

[24]

W. Bao and M. H. Chai, A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems,, Commun. Comput. Phys., 4 (2008), 135.   Google Scholar

[25]

W. Bao, I. Chern and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates,, J. Comput. Phys., 219 (2006), 836.  doi: 10.1016/j.jcp.2006.04.019.  Google Scholar

[26]

W. Bao, I. Chern and Y. Zhang, Efficient methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations,, preprint., ().   Google Scholar

[27]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674.  doi: 10.1137/S1064827503422956.  Google Scholar

[28]

W. Bao, Q. Du and Y. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation,, SIAM J. Appl. Math., 66 (2006), 758.  doi: 10.1137/050629392.  Google Scholar

[29]

W. Bao, Y. Ge, D. Jaksch, P. A. Markowich and R. M. Weishäupl, Convergence rate of dimension reduction in Bose-Einstein condensates,, Comput. Phys. Comm., 177 (2007), 832.  doi: 10.1016/j.cpc.2007.06.015.  Google Scholar

[30]

W. Bao and D. Jaksch, An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity,, SIAM J. Numer. Anal., 41 (2003), 1406.  doi: 10.1137/S0036142902413391.  Google Scholar

[31]

W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation,, J. Comput. Phys., 187 (2003), 318.  doi: 10.1016/S0021-9991(03)00102-5.  Google Scholar

[32]

W. Bao, D. Jaksch and P. A. Markowich, Three dimensional simulation of jet formation in collapsing condensates,, J. Phys. B: At. Mol. Opt. Phys., 37 (2004), 329.  doi: 10.1088/0953-4075/37/2/003.  Google Scholar

[33]

W. Bao, S. Jin and P. A. Markowich, On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime,, J. Comput. Phys., 175 (2002), 487.  doi: 10.1006/jcph.2001.6956.  Google Scholar

[34]

W. Bao, S. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes,, SIAM J. Sci. Comput., 25 (2003), 27.  doi: 10.1137/S1064827501393253.  Google Scholar

[35]

W. Bao, H.-L. Li and J. Shen, A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates,, SIAM J. Sci. Comput., 31 (2009), 3685.  doi: 10.1137/080739811.  Google Scholar

[36]

W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow,, SIAM J. Sci. Comput., 30 (2008), 1925.  doi: 10.1137/070698488.  Google Scholar

[37]

W. Bao, F. Y. Lim and Y. Zhang, Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime,, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 495.   Google Scholar

[38]

W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767.  doi: 10.1142/S0218202505000534.  Google Scholar

[39]

W. Bao, L. Pareschi and P. A. Markowich, Quantum kinetic theory: modeling and numerics for Bose-Einstein condensation,, in, (2004), 287.   Google Scholar

[40]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2020.  doi: 10.1137/030601211.  Google Scholar

[41]

W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates,, J. Comput. Phys., 227 (2008), 9778.  doi: 10.1016/j.jcp.2008.07.017.  Google Scholar

[42]

W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation,, J. Comput. Phys., ().   Google Scholar

[43]

W. Bao and W. Tang, Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional,, J. Comput. Phys., 187 (2003), 230.  doi: 10.1016/S0021-9991(03)00097-4.  Google Scholar

[44]

W. Bao and H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates,, J. Comput. Phys., 217 (2006), 612.  doi: 10.1016/j.jcp.2006.01.020.  Google Scholar

[45]

W. Bao and H. Wang, A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates,, SIAM J. Numer. Anal., 45 (2007), 2177.  doi: 10.1137/070681624.  Google Scholar

[46]

W. Bao, H. Wang and P. A. Markowich, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates,, Commun. Math. Sci., 3 (2005), 57.   Google Scholar

[47]

W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation,, Math. Models Methods Appl. Sci., 15 (2005), 1863.  doi: 10.1142/S021820250500100X.  Google Scholar

[48]

W. Bao and Y. Zhang, Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates,, Methods Appl. Anal., 17 (2010), 49.   Google Scholar

[49]

M. A. Baranov, M. Dalmonte, G. Pupillo and P. Zolle, Condensed matter theory of dipolar quantum gases,, Chem. Rev., 112 (2012), 5012.  doi: 10.1021/cr2003568.  Google Scholar

[50]

M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate,, Phys. Rev. Lett., 87 (2001).  doi: 10.1103/PhysRevLett.87.010404.  Google Scholar

[51]

N. Ben Abdallah, Y. Cai, F. Castella and F. M\'ehats, Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential,, Kinet. Relat. Models, 4 (2011), 831.  doi: 10.3934/krm.2011.4.831.  Google Scholar

[52]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost periodicity,, J. Diff. Eqn., 245 (2008), 154.  doi: 10.1016/j.jde.2008.02.002.  Google Scholar

[53]

N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189.  doi: 10.1137/040614554.  Google Scholar

[54]

C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation,, SIAM J. Numer. Anal., 40 (2002), 26.  doi: 10.1137/S0036142900381497.  Google Scholar

[55]

I. Bialynicki-Birula and Z. Bialynicki-Birula, Center-of-mass motion in the many-body theory of Bose-Einstein condensates,, Phys. Rev. A, 65 (2002).  doi: 10.1103/PhysRevA.65.063606.  Google Scholar

[56]

I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases,, Rev. Mod. Phys., 80 (2008), 885.  doi: 10.1103/RevModPhys.80.885.  Google Scholar

[57]

N. N. Bogoliubov, On the theory of superfluidity,, J. Phys. USSR, 11 (1947), 23.   Google Scholar

[58]

S. N. Bose, Plancks gesetz und lichtquantenhypothese,, Zeitschrift fr Physik, 3 (1924), 178.   Google Scholar

[59]

C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction,, Phys. Rev. Lett., 75 (1995), 1687.  doi: 10.1103/PhysRevLett.75.1687.  Google Scholar

[60]

C. C. Bradley, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of Lithium: Observation of limited condensates,, Phys. Rev. Lett., 78 (1997), 985.  doi: 10.1103/PhysRevLett.78.985.  Google Scholar

[61]

J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz and K. Promislow, Stability of repulsive Bose-Einstein condensates in a periodic potential,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.036612.  Google Scholar

[62]

M. Bruderer, W. Bao and D. Jaksch, Self-trapping of impurities in Bose-Einstein condensates: Strong attractive and repulsive coupling,, EPL, 82 (2008).  doi: 10.1209/0295-5075/82/30004.  Google Scholar

[63]

L. Cafferelli and F. H. Lin, An optimal partition problem for eigenvalues,, J. Sci. Comput., 31 (2007), 5.  doi: 10.1007/s10915-006-9114-8.  Google Scholar

[64]

Yongyong Cai, "Mathematical Theory and Numerical Methods for the Gross-Piatevskii Equations and Applications,", Ph.D Thesis, (2011).   Google Scholar

[65]

Y. Cai, M. Rosenkranz, Z. Lei and W. Bao, Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions,, Phys. Rev. A, 82 (2010).  doi: 10.1103/PhysRevA.82.043623.  Google Scholar

[66]

M. Caliari and M. Squassina, Location and phase segregation of ground and excited states for 2D Gross-Pitaevskii systems,, Dynamics of PDE, 5 (2008), 117.   Google Scholar

[67]

P. Capuzzi and S. Hernandez, Bose-Einstein condensation in harmonic double wells,, Phys. Rev. A, 59 (1999).  doi: 10.1103/PhysRevA.59.1488.  Google Scholar

[68]

B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates,, Phys. Rev. Lett., 83 (1999), 895.  doi: 10.1103/PhysRevLett.83.895.  Google Scholar

[69]

R. Carles, "Semi-Classical Analysis for Nonlinear Schrödinger Equations,", World Scentific, (2008).   Google Scholar

[70]

R. Carles, P. A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves,, J. Statist. Phys., 117 (2004), 343.  doi: 10.1023/B:JOSS.0000044070.34410.17.  Google Scholar

[71]

R. Carles, P. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases,, Nonlinearity, 21 (2008), 2569.  doi: 10.1088/0951-7715/21/11/006.  Google Scholar

[72]

L. D. Carr, C. W. Clark and W. P. Reinhardt, Stationary solutions of the one dimensional nonlinear Schrodinger equation I. case of repulsive nonlinearity,, Phys. Rev. A, 62 (2000).  doi: 10.1103/PhysRevA.62.063610.  Google Scholar

[73]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lect. Notes Math., (2003).   Google Scholar

[74]

M. M. Cerimele, M. L. Chiofalo, F. Pistella, S. Succi and M. P. Tosi, Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates,, Phys. Rev. E, 62 (2000), 1382.  doi: 10.1103/PhysRevE.62.1382.  Google Scholar

[75]

M. M. Cerimele, F. Pistella and S. Succi, Particle-inspired scheme for the Gross-Pitaevski equation: An application to Bose-Einstein condensation,, Comput. Phys. Comm., 129 (2000), 82.  doi: 10.1016/S0010-4655(00)00095-3.  Google Scholar

[76]

Q. Chang, B. Guo and H. Jiang, Finite difference method for generalized Zakharov equations,, Math. Comp., 64 (1995), 537.  doi: 10.1090/S0025-5718-1995-1284664-5.  Google Scholar

[77]

S. M. Chang, W. W. Lin and S. F. Shieh, Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate,, J. Comput. Phys., 202 (2005), 367.  doi: 10.1016/j.jcp.2004.07.012.  Google Scholar

[78]

M. L. Chiofalo, S. Succi and M. P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm,, Phys. Rev. E, 62 (2000), 7438.  doi: 10.1103/PhysRevE.62.7438.  Google Scholar

[79]

D. I. Choi and Q. Niu, Bose-Einstein condensation in an optical lattice,, Phys. Rev. Lett., 82 (1999), 2022.  doi: 10.1103/PhysRevLett.82.2022.  Google Scholar

[80]

E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments,, Rev. Mod. Phys., 74 (2002), 875.  doi: 10.1103/RevModPhys.74.875.  Google Scholar

[81]

M. Correggi, P. Florian, N. Rougerie and J. Yngvason, Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices,, Phys. Rev. A, 84 (2011).  doi: 10.1103/PhysRevA.84.053614.  Google Scholar

[82]

M. Correggi, N. Rougerie and J. Yngvason, The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate,, Comm. Math. Phys., 303 (2011), 451.  doi: 10.1007/s00220-011-1202-4.  Google Scholar

[83]

M. Correggi and J. Yngvason, Energy and vorticity in fast rotating Bose-Einstein condensates,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/44/445002.  Google Scholar

[84]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[85]

M. J. Davis and P. B. Blakie, Critical temperature of a trapped Bose gas: Comparison of theory and experiment,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.060404.  Google Scholar

[86]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969.  doi: 10.1103/PhysRevLett.75.3969.  Google Scholar

[87]

M. J. Davis, S. A. Morgan and K. Burnett, Simulations of Bose-fields at finite temperature,, Phys. Rev. Lett., 87 (2001).  doi: 10.1103/PhysRevLett.87.160402.  Google Scholar

[88]

A. Debussche and E. Faou, Modified energy for split-step methods applied to the linear Schrödinger equations,, SIAM J. Numer. Anal., 47 (2009), 3705.  doi: 10.1137/080744578.  Google Scholar

[89]

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.046706.  Google Scholar

[90]

R. J. Dodd, Approximate solutions of the nonlinear Schrödinger equation for ground and excited sates for Bose-Einstein condensates,, J. Res. Natl. Inst. Stand. Technol., 101 (1996), 545.  doi: 10.6028/jres.101.054.  Google Scholar

[91]

Q. Du, Numerical computations of quantized vortices in Bose-Einstein condensate,, in, (2002), 155.  doi: 10.1007/978-1-4615-0113-8_11.  Google Scholar

[92]

Q. Du and F. H. Lin, Numerical approximations of a norm preserving gradient flow and applications to an optimal partition problem,, Nonlinearity, 22 (2009), 67.  doi: 10.1088/0951-7715/22/1/005.  Google Scholar

[93]

M. Edwards and K. Burnett, Numerical solution of the nonlinear Schrödinger equation for small samples of neutral atoms,, Phys. Rev. A, 51 (1995).   Google Scholar

[94]

A. Einstein, Quantentheorie des einatomigen idealen gases,, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 22 (1924), 261.   Google Scholar

[95]

A. Einstein, Quantentheorie des einatomigen idealen gases, zweite abhandlung,, Sitzungs-berichte der Preussischen Akademie der Wissenschaften, 1 (1925), 3.   Google Scholar

[96]

L. Erdős, B. Schlein and H. T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate,, Ann. Math., 172 (2010), 291.  doi: 10.4007/annals.2010.172.291.  Google Scholar

[97]

A. L. Fetter, Rotating trapped Bose-Einstein condensates,, Rev. Mod. Phys., 81 (2009), 647.   Google Scholar

[98]

A. L. Fetter and A. A. Svidzinsky, Vortices in trapped dilute Bose-Einstein condensate,, J. Phys.: Condens. Matter, 13 (2001), 135.  doi: 10.1088/0953-8984/13/12/201.  Google Scholar

[99]

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner and T. J. Greytak, Bose-Einstein condensation of atomic hydrogen,, Phys. Rev. Lett, 81 (1998).  doi: 10.1103/PhysRevLett.81.3811.  Google Scholar

[100]

J. J. Garcia-Ripoll and V. M. Perez-Garcia, Optimizing Schrödinger functional using Sobolev gradients: Applications to quantum mechanics and nonlinear optics,, SIAM J. Sci. Comput., 23 (2001), 1315.  doi: 10.1137/S1064827500377721.  Google Scholar

[101]

J. J. Garcia-Ripoll, V. M. Perez-Garcia and V. Vekslerchik, Construction of exact solutions by spatial translations in inhomogeneous nonlinear Schrödinger equations,, Phys. Rev. E, 64 (2001).  doi: 10.1103/PhysRevE.64.056602.  Google Scholar

[102]

S. A. Gardiner, D. Jaksch, R. Dum, J. I. Cirac and P. Zoller, Nonlinear matter wave dynamics with a chaotic potential,, Phys. Rev. A, 62 (2000).  doi: 10.1103/PhysRevA.62.023612.  Google Scholar

[103]

I. Gasser and P. A. Markowich, Quantum hydrodynamics, Winger transforms and the classical limit,, Assymptot. Anal., 14 (1997), 97.   Google Scholar

[104]

P. Gerard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 321.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[105]

S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of ultracold atomic Fermi gases,, Rev. Mod. Phys., 80 (2008), 1215.  doi: 10.1103/RevModPhys.80.1215.  Google Scholar

[106]

R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension,, Math. Comp., 58 (1992), 83.  doi: 10.1090/S0025-5718-1992-1106968-6.  Google Scholar

[107]

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, Bose-Einstein condensation of Chromium,, Phys. Rev. Lett., 94 (2005).  doi: 10.1103/PhysRevLett.94.160401.  Google Scholar

[108]

A. Griffin, T. Nikuni and E. Zaremba, "Bose-Condensed Gases at Finite Temperatures,", Cambridge University Press, (2009).  doi: 10.1017/CBO9780511575150.  Google Scholar

[109]

E. P. Gross, Structure of a quantized vortex in boson systems,, Nuovo. Cimento., 20 (1961), 454.  doi: 10.1007/BF02731494.  Google Scholar

[110]

Paul Lee Halkyard, "Dynamics in Cold Atomic Gases: Resonant Behaviour of the Quantum Delta-Kicked Accelerator and Bose-Einstein Condensates in Ring Traps,", Ph.D Thesis, (2010).   Google Scholar

[111]

C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term,, Math. Methods Appl. Sci., 31 (2008), 655.  doi: 10.1002/mma.931.  Google Scholar

[112]

C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions,, J. Math. Phys., 48 (2007).   Google Scholar

[113]

D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 1539.   Google Scholar

[114]

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,, SIAM Rev. Chronicle, 15 (1973).   Google Scholar

[115]

N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension,, Differ. Integral Equ., 2 (1994), 453.   Google Scholar

[116]

C. E. Hecht, The possible superfluid behaviour of hydrogen atom gases and liquids,, Physica, 25 (1959), 1159.   Google Scholar

[117]

T. L. Ho, Spinor Bose condensates in optical traps,, Phys. Rev. Lett., 81 (1998), 742.   Google Scholar

[118]

M. Holthaus, Towards coherent control of a Bose-Einstein condensate in a double well,, Phys. Rev. A, 64 (2001).   Google Scholar

[119]

R. Ignat and V. Millot, The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate,, J. Funct. Anal., 233 (2006), 260.  doi: 10.1016/j.jfa.2005.06.020.  Google Scholar

[120]

R. Ignat and V. Millot, Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate,, Rev. Math. Phys., 18 (2006), 119.  doi: 10.1142/S0129055X06002607.  Google Scholar

[121]

D. Jaksch, S. A. Gardiner, K. Schulze, J. I. Cirac and P. Zoller, Uniting Bose-Einstein condensates in optical resonators,, Phys. Rev. Lett., 86 (2001), 4733.  doi: 10.1103/PhysRevLett.86.4733.  Google Scholar

[122]

S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing nonlinear Schrödinger hierarchy,, Comm. Pure Appl. Math., 52 (1999), 613.  doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L.  Google Scholar

[123]

G. Karrali and C. Sourdis, The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit,, preprint, ().   Google Scholar

[124]

Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein condensates,, Phys. Rep., ().   Google Scholar

[125]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations,, Invent. Math., 158 (2004), 343.  doi: 10.1007/s00222-004-0373-4.  Google Scholar

[126]

W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser,, Rev. Mod. Phys., 74 (2002), 1131.  doi: 10.1103/RevModPhys.74.1131.  Google Scholar

[127]

A. Klein, D. Jaksch, Y. Zhang and W. Bao, Dynamics of vortices in weakly interacting Bose-Einstein condensates,, Phys. Rev. A, 76 (2007).   Google Scholar

[128]

I. Kyza, C. Makridakis and M. Plexousakis, Error control for time-splitting spectral approximations of the semiclassical Schrödinger equation,, IMA J. Numer. Anal., 31 (2011), 416.   Google Scholar

[129]

C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5257.   Google Scholar

[130]

A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts,, Rev. Mod. Phys., 73 (2001), 307.   Google Scholar

[131]

E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Mathematics, (2001).   Google Scholar

[132]

E. H. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases,, Comm. Math. Phys., 264 (2006), 505.  doi: 10.1007/s00220-006-1524-9.  Google Scholar

[133]

E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, "The Mathematics of the Bose Gas and its Condensation,", Oberwolfach Seminars 34, (2005).   Google Scholar

[134]

E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional,, Phys. Rev. A, 61 (2000).   Google Scholar

[135]

E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas,, Comm. Math. Phys., 252 (2004), 485.   Google Scholar

[136]

Fong Yin Lim, "Analytical and Numerical Studies of Bose-Einstein Condensates,", Ph.D Thesis, (2008).   Google Scholar

[137]

H. L. Liu and C. Sparber, Rigorious derivation of the hydrodynamical equations for rotating superfluids,, Math. Models Methods Appl. Sci., 18 (2008), 689.   Google Scholar

[138]

W. M. Liu, B. Wu and Q. Niu, Nonlinear effects in interference of Bose-Einstein condensates,, Phys. Rev. Lett., 84 (2000), 2294.   Google Scholar

[139]

F. London, The $\lambda$-phenomenon of liquid helium and the Bose-Einstein degeneracy,, Nature, 141 (1938), 643.   Google Scholar

[140]

M. Lu, N. Q. Burdick, S.-H. Youn and B. L. Lev, A strongly dipolar Bose-Einstein condensate of Dysprosium,, Phy. Rev. Lett., 107 (2011).   Google Scholar

[141]

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations,, Math. Comp., 77 (2008), 2141.  doi: 10.1090/S0025-5718-08-02101-7.  Google Scholar

[142]

K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate,, Phys. Rev. Lett., 84 (2000), 806.  doi: 10.1103/PhysRevLett.84.806.  Google Scholar

[143]

M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate,, Phys. Rev. Lett., 83 (1999), 2498.  doi: 10.1103/PhysRevLett.83.2498.  Google Scholar

[144]

C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling,, Phys. Rev. Lett., 78 (1997), 586.  doi: 10.1103/PhysRevLett.78.586.  Google Scholar

[145]

G. J. Milburn, J. Corney, E. M. Wright and D. F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential,, Phys. Rev. A, 55 (1997).  doi: 10.1103/PhysRevA.55.4318.  Google Scholar

[146]

B. Min, T. Li, M. Rosenkranz and W. Bao, Subdiffusive spreading of a Bose-Einstein condensate in random potentials,, Phys. Rev. A, 86 (2012).   Google Scholar

[147]

O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices,, Rev. Mod. Phys., 78 (2006), 179.  doi: 10.1103/RevModPhys.78.179.  Google Scholar

[148]

C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential,, BIT, 49 (2009), 199.  doi: 10.1007/s10543-009-0215-2.  Google Scholar

[149]

R. Ozeri, N. Katz, J. Steinhauer and N. Davidson, Colloquium: Bulk Bogoliubov excitations in a Bose-Einstein condensate,, Rev. Mod. Phys., 77 (2005), 187.  doi: 10.1103/RevModPhys.77.187.  Google Scholar

[150]

N. G. Parker, C. Ticknor, A. M. Martin and D. H. J. O'Dell1, Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate,, Phys. Rev. A, 79 (2009).  doi: 10.1103/PhysRevA.79.013617.  Google Scholar

[151]

C. J. Pethick and H. Smith, "Bose-Einstein Condensation in Dilute Gases,", Cambridge University Press, (2002).   Google Scholar

[152]

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas,, Soviet Phys. JETP, 13 (1961), 451.   Google Scholar

[153]

L. P. Pitaevskii and S. Stringari, "Bose-Einstein Condensation,", Clarendon Press, (2003).   Google Scholar

[154]

A. Posazhennikova, Colloquium: Weakly interacting, dilute Bose gases in 2D,, Rev. Mod. Phys., 78 (2006), 1111.  doi: 10.1103/RevModPhys.78.1111.  Google Scholar

[155]

J. L. Roberts, N. R. Claussen, S. L. Cornish and C. E. Wieman, Magnetic field dependence of ultracold inelastic collisions near a Feshbach resonance,, Phys. Rev. Lett., 85 (2000), 728.  doi: 10.1103/PhysRevLett.85.728.  Google Scholar

[156]

M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable,, J. Comput. Phys., 104 (1993), 277.  doi: 10.1006/jcph.1993.1029.  Google Scholar

[157]

S. Ronen, D. C. E. Bortolotti and J. L. Bohn, Bogoliubov modes of a dipolar condensate in a cylindrical trap,, Phys. Rev. A, 74 (2006).  doi: 10.1103/PhysRevA.74.013623.  Google Scholar

[158]

M. Rosenkranz, D. Jaksch, F. Y. Lim and W. Bao, Self-trapping of Bose-Einstein condensate expanding into shallow optical lattices,, Phys. Rev. A, 77 (2008).  doi: 10.1103/PhysRevA.77.063607.  Google Scholar

[159]

N. Rougerie, Vortex rings in fast rotating Bose-Einstein condensates,, Arch. Ration. Mech. Anal., 203 (2012), 69.  doi: 10.1007/s00205-011-0447-6.  Google Scholar

[160]

P. A. Ruprecht, M. J. Holland, K. Burnett and M. Edwards, Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms,, Phys. Rev. A, 51 (1995), 4704.  doi: 10.1103/PhysRevA.51.4704.  Google Scholar

[161]

C. Ryu, M. F. Andersen, P. Cladé, Vasant Natarajan, K. Helmerson and W. D. Phillips, Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap,, Phys. Rev. Lett., 99 (2007).  doi: 10.1103/PhysRevLett.99.260401.  Google Scholar

[162]

H. Saito and M. Ueda, Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction,, Phys. Rev. Lett., 86 (2001), 1406.  doi: 10.1103/PhysRevLett.86.1406.  Google Scholar

[163]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", $2^{nd}$ edition, 59 (2007).   Google Scholar

[164]

L. Santos, G. Shlyapnikov, P. Zoller and M. Lewenstein, Bose-Einstein condesation in trapped dipolar gases,, Phys. Rev. Lett., 85 (2000), 1791.  doi: 10.1103/PhysRevLett.85.1791.  Google Scholar

[165]

R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas,, Comm. Math. Phys., 229 (2002), 491.  doi: 10.1007/s00220-002-0695-2.  Google Scholar

[166]

J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions,, SIAM J. Numer. Anal., 38 (2000), 1113.  doi: 10.1137/S0036142999362936.  Google Scholar

[167]

J. Shen and T. Tang, "Spectral and High-Order Methods with Applications,", Science Press, (2006).   Google Scholar

[168]

J. Shen, T. Tang and L.-L. Wang, "Spectral Methods. Algorithms, Analysis and Applications,", Springer, (2011).   Google Scholar

[169]

J. Shen and Z.-Q. Wang, Error analysis of the Strang time-splitting Laguerre-Hermite/Hermite collocation methods for the Gross-Pitaevskii equation,, J. Found. Comput. Math., ().   Google Scholar

[170]

I. F. Silvera and J. T. M. Walraven, Stabilization of atomic Hydrogen at low temperature,, Phys. Rev. Lett., 44 (1980), 164.  doi: 10.1103/PhysRevLett.44.164.  Google Scholar

[171]

T. P. Simula, A. A. Penckwitt and R. J. Ballagh, Giant vortex lattice deformation in rapidly rotating Bose-Einstein condensates,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.060401.  Google Scholar

[172]

C. Sparber, Effective mass theorems for nonlinear Schrödinger equations,, SIAM J. Appl. Math., 66 (2006), 820.  doi: 10.1137/050623759.  Google Scholar

[173]

D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard and W. Ketterle, Excitation of phonons in a Bose-Einstein condensate by light scattering,, Phys. Rev. Lett., 83 (1999), 2876.  doi: 10.1103/PhysRevLett.83.2876.  Google Scholar

[174]

G. Strang, On the construction and comparison of difference schemes,, SIAM J. Numer. Anal., 5 (1968), 506.  doi: 10.1137/0705041.  Google Scholar

[175]

R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations,, Duke Math. J., 44 (1977), 705.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[176]

C. Sulem and P. L. Sulem, "The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,", Springer-Verlag, (1999).   Google Scholar

[177]

G. Szegö, "Orthogonal Polynomials,", $4^{th}$ edition, 23 (1975).   Google Scholar

[178]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations, II. Numerical, nonlinear Schrödinger equation,, J. Comput. Phys., 55 (1984), 203.  doi: 10.1016/0021-9991(84)90003-2.  Google Scholar

[179]

M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schr\"odinger equations,, SIAM J. Numer. Anal., 46 (2008), 2022.  doi: 10.1137/060674636.  Google Scholar

[180]

V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Springer-Verlag, (1997).   Google Scholar

[181]

I. Tikhonenkov, B. A. Malomed and A. Vardi, Anisotropic solitons in dipolar Bose-Einstein condensates,, Phys. Rev. Lett., 100 (2008).  doi: 10.1103/PhysRevLett.100.090406.  Google Scholar

[182]

S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel and Y. Yamamoto, Observation of Bogoliubov excitations in exciton-polariton condensates,, Nature Phys., 4 (2008), 700.  doi: 10.1038/nphys1034.  Google Scholar

[183]

Hanquan Wang, "Quantized Vortices States and Dyanmics in Bose-Einstein Condensates,", PhD Thesis, (2006).   Google Scholar

[184]

H. Wang, A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates,, J. Comput. Appl. Math., 205 (2007), 88.  doi: 10.1016/j.cam.2006.04.042.  Google Scholar

[185]

H. Wang, An efficient numerical method for computing dynamics of spin F = 2 Bose-Einstein condensates,, J. Comput. Phys., 230 (2011), 6155.  doi: 10.1016/j.jcp.2011.04.021.  Google Scholar

[186]

H. Wang and W. Xu, An efficient numerical method for simulating the dynamics of coupling Bose-Einstein condensates in optical resonators,, Comput. Phys. Comm., 182 (2011), 706.  doi: 10.1016/j.cpc.2010.12.010.  Google Scholar

[187]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.  doi: 10.1007/BF01208265.  Google Scholar

[188]

J. Williams, R. Walser, J. Cooper, E. Cornell and M. Holland, Nonlinear Josephson-type oscillations of a driven two-component Bose-Einstein condensate,, Phys. Rev. A, 59 (1999).  doi: 10.1103/PhysRevA.59.R31.  Google Scholar

[189]

B. Xiong, J. Gong, H. Pu, W. Bao and B. Li, Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential,, Phys. Rev. A, 79 (2009).  doi: 10.1103/PhysRevA.79.013626.  Google Scholar

[190]

S. Yi and L. You, Trapped atomic condensates with anisotropic interactions,, Phys. Rev. A, 61 (2000).  doi: 10.1103/PhysRevA.61.041604.  Google Scholar

[191]

S. Yi and L. You, Expansion of a dipolar condensate,, Phys. Rev. A, 67 (2003).  doi: 10.1103/PhysRevA.67.045601.  Google Scholar

[192]

H. Yoshida, Construction of higher order symplectic integrators,, Phys. Lett. A, 150 (1990), 262.  doi: 10.1016/0375-9601(90)90092-3.  Google Scholar

[193]

E. Zaremba, T. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperature,, J. Low Temp. Phys., 116 (1999).  doi: 10.1023/A:1021846002995.  Google Scholar

[194]

R. Zeng and Y. Zhang, Efficiently computing vortex lattices in fast rotating Bose-Einstein condensates,, Comput. Phys. Commun., 180 (2009), 854.  doi: 10.1016/j.cpc.2008.12.003.  Google Scholar

[195]

P. Zhang, "Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations,", Courant Lect. Notes Math., 17 (2008).   Google Scholar

[196]

Yanzhi Zhang, "Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensation,", PhD Thesis, (2006).   Google Scholar

[197]

Y. Zhang and W. Bao, Dynamics of the center of mass in rotating Bose-Einstein condensates,, Appl. Numer. Math., 57 (2007), 697.  doi: 10.1016/j.apnum.2006.07.011.  Google Scholar

[198]

Y. Zhang, W. Bao and H. Li, Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation,, Phys. D, 234 (2007), 49.  doi: 10.1016/j.physd.2007.06.026.  Google Scholar

show all references

References:
[1]

J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates,, Science, 292 (2001), 476.  doi: 10.1126/science.1060182.  Google Scholar

[2]

S. K. Adhikari and P. Muruganandam, Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation,, J. Phys. B: At. Mol. Opt. Phys., 35 (2002), 2831.  doi: 10.1088/0953-4075/35/12/317.  Google Scholar

[3]

S. K. Adhikari and P. Muruganandam, Mean-field model for the interference of matter-waves from a three-dimensional optical trap,, Phys. Lett. A, 310 (2003), 229.  doi: 10.1016/S0375-9601(03)00335-9.  Google Scholar

[4]

A. Aftalion, "Vortices in Bose-Einstein Condensates,", Progress in Nonlinear Differential Equations and their Applications, 67 (2006).   Google Scholar

[5]

A. Aftalion and Q. Du, Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime,, Phys. Rev. A, 64 (2001).  doi: 10.1103/PhysRevA.64.063603.  Google Scholar

[6]

A. Aftalion, Q. Du and Y. Pomeau, Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose Einstein condensate,, Phys. Rev. Lett., 91 (2003).  doi: 10.1103/PhysRevLett.91.090407.  Google Scholar

[7]

A. Aftalion, R. Jerrard and J. Royo-Letelier, Non-existence of vortices in the small density region of a condensate,, J. Funct. Anal., 260 (2011), 2387.  doi: 10.1016/j.jfa.2010.12.003.  Google Scholar

[8]

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm and F. Ferlaino, Bose-Einstein condensation of Erbium,, Phys. Rev. Lett., 108 (2012).  doi: 10.1103/PhysRevLett.108.210401.  Google Scholar

[9]

G. Akrivis, Finite difference discretization of the cubic Schrödinger equation,, IMA J. Numer. Anal., 13 (1993), 115.  doi: 10.1093/imanum/13.1.115.  Google Scholar

[10]

G. Akrivis, V. Dougalis and O. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numer. Math., 59 (1991), 31.  doi: 10.1007/BF01385769.  Google Scholar

[11]

J. O. Andersen, Theory of the weakly interacting Bose gas,, Rev. Mod. Phys., 76 (2004), 599.  doi: 10.1103/RevModPhys.76.599.  Google Scholar

[12]

M. H. Anderson, J. R. Ensher, M. R. Matthewa, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,, Science, 269 (1995), 198.  doi: 10.1126/science.269.5221.198.  Google Scholar

[13]

P. Antonelli, D. Marahrens and C. Sparber, On the Cauchy problem for nonlinear Schrödinger equations with rotation,, Discrete Contin. Dyn. Syst., 32 (2012), 703.  doi: 10.3934/dcds.2012.32.703.  Google Scholar

[14]

W. Bao, The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics,, in, 9 (2007), 141.   Google Scholar

[15]

W. Bao, Ground states and dynamics of multicomponent Bose-Einstein condensates,, Multiscale Model. Simul., 2 (2004), 210.  doi: 10.1137/030600209.  Google Scholar

[16]

W. Bao, Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions,, Methods Appl. Anal., 11 (2004), 367.   Google Scholar

[17]

W. Bao, Analysis and efficient computation for the dynamics of two-component Bose-Einstein condensates: Stationary and time dependent Gross-Pitaevskii equations,, Contemp. Math., 473 (2008), 1.  doi: 10.1090/conm/473/09222.  Google Scholar

[18]

W. Bao, N. Ben Abdallah and Y. Cai, Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement,, SIAM J. Math. Anal., 44 (2012), 1713.  doi: 10.1137/110850451.  Google Scholar

[19]

W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction,, East Asia J. Appl. Math., 1 (2010), 49.   Google Scholar

[20]

W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator,, SIAM J Numer. Anal., 50 (2012), 492.  doi: 10.1137/110830800.  Google Scholar

[21]

W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation,, Math. Comp., 82 (2013), 99.   Google Scholar

[22]

W. Bao and Y. Cai, Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator,, preprint., ().   Google Scholar

[23]

W. Bao, Y. Cai and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates,, J. Comput. Phys., 229 (2010), 7874.  doi: 10.1016/j.jcp.2010.07.001.  Google Scholar

[24]

W. Bao and M. H. Chai, A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems,, Commun. Comput. Phys., 4 (2008), 135.   Google Scholar

[25]

W. Bao, I. Chern and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates,, J. Comput. Phys., 219 (2006), 836.  doi: 10.1016/j.jcp.2006.04.019.  Google Scholar

[26]

W. Bao, I. Chern and Y. Zhang, Efficient methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations,, preprint., ().   Google Scholar

[27]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674.  doi: 10.1137/S1064827503422956.  Google Scholar

[28]

W. Bao, Q. Du and Y. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation,, SIAM J. Appl. Math., 66 (2006), 758.  doi: 10.1137/050629392.  Google Scholar

[29]

W. Bao, Y. Ge, D. Jaksch, P. A. Markowich and R. M. Weishäupl, Convergence rate of dimension reduction in Bose-Einstein condensates,, Comput. Phys. Comm., 177 (2007), 832.  doi: 10.1016/j.cpc.2007.06.015.  Google Scholar

[30]

W. Bao and D. Jaksch, An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity,, SIAM J. Numer. Anal., 41 (2003), 1406.  doi: 10.1137/S0036142902413391.  Google Scholar

[31]

W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation,, J. Comput. Phys., 187 (2003), 318.  doi: 10.1016/S0021-9991(03)00102-5.  Google Scholar

[32]

W. Bao, D. Jaksch and P. A. Markowich, Three dimensional simulation of jet formation in collapsing condensates,, J. Phys. B: At. Mol. Opt. Phys., 37 (2004), 329.  doi: 10.1088/0953-4075/37/2/003.  Google Scholar

[33]

W. Bao, S. Jin and P. A. Markowich, On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime,, J. Comput. Phys., 175 (2002), 487.  doi: 10.1006/jcph.2001.6956.  Google Scholar

[34]

W. Bao, S. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes,, SIAM J. Sci. Comput., 25 (2003), 27.  doi: 10.1137/S1064827501393253.  Google Scholar

[35]

W. Bao, H.-L. Li and J. Shen, A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates,, SIAM J. Sci. Comput., 31 (2009), 3685.  doi: 10.1137/080739811.  Google Scholar

[36]

W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow,, SIAM J. Sci. Comput., 30 (2008), 1925.  doi: 10.1137/070698488.  Google Scholar

[37]

W. Bao, F. Y. Lim and Y. Zhang, Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime,, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 495.   Google Scholar

[38]

W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767.  doi: 10.1142/S0218202505000534.  Google Scholar

[39]

W. Bao, L. Pareschi and P. A. Markowich, Quantum kinetic theory: modeling and numerics for Bose-Einstein condensation,, in, (2004), 287.   Google Scholar

[40]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2020.  doi: 10.1137/030601211.  Google Scholar

[41]

W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates,, J. Comput. Phys., 227 (2008), 9778.  doi: 10.1016/j.jcp.2008.07.017.  Google Scholar

[42]

W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation,, J. Comput. Phys., ().   Google Scholar

[43]

W. Bao and W. Tang, Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional,, J. Comput. Phys., 187 (2003), 230.  doi: 10.1016/S0021-9991(03)00097-4.  Google Scholar

[44]

W. Bao and H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates,, J. Comput. Phys., 217 (2006), 612.  doi: 10.1016/j.jcp.2006.01.020.  Google Scholar

[45]

W. Bao and H. Wang, A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates,, SIAM J. Numer. Anal., 45 (2007), 2177.  doi: 10.1137/070681624.  Google Scholar

[46]

W. Bao, H. Wang and P. A. Markowich, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates,, Commun. Math. Sci., 3 (2005), 57.   Google Scholar

[47]

W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation,, Math. Models Methods Appl. Sci., 15 (2005), 1863.  doi: 10.1142/S021820250500100X.  Google Scholar

[48]

W. Bao and Y. Zhang, Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates,, Methods Appl. Anal., 17 (2010), 49.   Google Scholar

[49]

M. A. Baranov, M. Dalmonte, G. Pupillo and P. Zolle, Condensed matter theory of dipolar quantum gases,, Chem. Rev., 112 (2012), 5012.  doi: 10.1021/cr2003568.  Google Scholar

[50]

M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate,, Phys. Rev. Lett., 87 (2001).  doi: 10.1103/PhysRevLett.87.010404.  Google Scholar

[51]

N. Ben Abdallah, Y. Cai, F. Castella and F. M\'ehats, Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential,, Kinet. Relat. Models, 4 (2011), 831.  doi: 10.3934/krm.2011.4.831.  Google Scholar

[52]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost periodicity,, J. Diff. Eqn., 245 (2008), 154.  doi: 10.1016/j.jde.2008.02.002.  Google Scholar

[53]

N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189.  doi: 10.1137/040614554.  Google Scholar

[54]

C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation,, SIAM J. Numer. Anal., 40 (2002), 26.  doi: 10.1137/S0036142900381497.  Google Scholar

[55]

I. Bialynicki-Birula and Z. Bialynicki-Birula, Center-of-mass motion in the many-body theory of Bose-Einstein condensates,, Phys. Rev. A, 65 (2002).  doi: 10.1103/PhysRevA.65.063606.  Google Scholar

[56]

I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases,, Rev. Mod. Phys., 80 (2008), 885.  doi: 10.1103/RevModPhys.80.885.  Google Scholar

[57]

N. N. Bogoliubov, On the theory of superfluidity,, J. Phys. USSR, 11 (1947), 23.   Google Scholar

[58]

S. N. Bose, Plancks gesetz und lichtquantenhypothese,, Zeitschrift fr Physik, 3 (1924), 178.   Google Scholar

[59]

C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction,, Phys. Rev. Lett., 75 (1995), 1687.  doi: 10.1103/PhysRevLett.75.1687.  Google Scholar

[60]

C. C. Bradley, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of Lithium: Observation of limited condensates,, Phys. Rev. Lett., 78 (1997), 985.  doi: 10.1103/PhysRevLett.78.985.  Google Scholar

[61]

J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz and K. Promislow, Stability of repulsive Bose-Einstein condensates in a periodic potential,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.036612.  Google Scholar

[62]

M. Bruderer, W. Bao and D. Jaksch, Self-trapping of impurities in Bose-Einstein condensates: Strong attractive and repulsive coupling,, EPL, 82 (2008).  doi: 10.1209/0295-5075/82/30004.  Google Scholar

[63]

L. Cafferelli and F. H. Lin, An optimal partition problem for eigenvalues,, J. Sci. Comput., 31 (2007), 5.  doi: 10.1007/s10915-006-9114-8.  Google Scholar

[64]

Yongyong Cai, "Mathematical Theory and Numerical Methods for the Gross-Piatevskii Equations and Applications,", Ph.D Thesis, (2011).   Google Scholar

[65]

Y. Cai, M. Rosenkranz, Z. Lei and W. Bao, Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions,, Phys. Rev. A, 82 (2010).  doi: 10.1103/PhysRevA.82.043623.  Google Scholar

[66]

M. Caliari and M. Squassina, Location and phase segregation of ground and excited states for 2D Gross-Pitaevskii systems,, Dynamics of PDE, 5 (2008), 117.   Google Scholar

[67]

P. Capuzzi and S. Hernandez, Bose-Einstein condensation in harmonic double wells,, Phys. Rev. A, 59 (1999).  doi: 10.1103/PhysRevA.59.1488.  Google Scholar

[68]

B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates,, Phys. Rev. Lett., 83 (1999), 895.  doi: 10.1103/PhysRevLett.83.895.  Google Scholar

[69]

R. Carles, "Semi-Classical Analysis for Nonlinear Schrödinger Equations,", World Scentific, (2008).   Google Scholar

[70]

R. Carles, P. A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves,, J. Statist. Phys., 117 (2004), 343.  doi: 10.1023/B:JOSS.0000044070.34410.17.  Google Scholar

[71]

R. Carles, P. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases,, Nonlinearity, 21 (2008), 2569.  doi: 10.1088/0951-7715/21/11/006.  Google Scholar

[72]

L. D. Carr, C. W. Clark and W. P. Reinhardt, Stationary solutions of the one dimensional nonlinear Schrodinger equation I. case of repulsive nonlinearity,, Phys. Rev. A, 62 (2000).  doi: 10.1103/PhysRevA.62.063610.  Google Scholar

[73]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lect. Notes Math., (2003).   Google Scholar

[74]

M. M. Cerimele, M. L. Chiofalo, F. Pistella, S. Succi and M. P. Tosi, Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates,, Phys. Rev. E, 62 (2000), 1382.  doi: 10.1103/PhysRevE.62.1382.  Google Scholar

[75]

M. M. Cerimele, F. Pistella and S. Succi, Particle-inspired scheme for the Gross-Pitaevski equation: An application to Bose-Einstein condensation,, Comput. Phys. Comm., 129 (2000), 82.  doi: 10.1016/S0010-4655(00)00095-3.  Google Scholar

[76]

Q. Chang, B. Guo and H. Jiang, Finite difference method for generalized Zakharov equations,, Math. Comp., 64 (1995), 537.  doi: 10.1090/S0025-5718-1995-1284664-5.  Google Scholar

[77]

S. M. Chang, W. W. Lin and S. F. Shieh, Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate,, J. Comput. Phys., 202 (2005), 367.  doi: 10.1016/j.jcp.2004.07.012.  Google Scholar

[78]

M. L. Chiofalo, S. Succi and M. P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm,, Phys. Rev. E, 62 (2000), 7438.  doi: 10.1103/PhysRevE.62.7438.  Google Scholar

[79]

D. I. Choi and Q. Niu, Bose-Einstein condensation in an optical lattice,, Phys. Rev. Lett., 82 (1999), 2022.  doi: 10.1103/PhysRevLett.82.2022.  Google Scholar

[80]

E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments,, Rev. Mod. Phys., 74 (2002), 875.  doi: 10.1103/RevModPhys.74.875.  Google Scholar

[81]

M. Correggi, P. Florian, N. Rougerie and J. Yngvason, Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices,, Phys. Rev. A, 84 (2011).  doi: 10.1103/PhysRevA.84.053614.  Google Scholar

[82]

M. Correggi, N. Rougerie and J. Yngvason, The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate,, Comm. Math. Phys., 303 (2011), 451.  doi: 10.1007/s00220-011-1202-4.  Google Scholar

[83]

M. Correggi and J. Yngvason, Energy and vorticity in fast rotating Bose-Einstein condensates,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/44/445002.  Google Scholar

[84]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[85]

M. J. Davis and P. B. Blakie, Critical temperature of a trapped Bose gas: Comparison of theory and experiment,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.060404.  Google Scholar

[86]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969.  doi: 10.1103/PhysRevLett.75.3969.  Google Scholar

[87]

M. J. Davis, S. A. Morgan and K. Burnett, Simulations of Bose-fields at finite temperature,, Phys. Rev. Lett., 87 (2001).  doi: 10.1103/PhysRevLett.87.160402.  Google Scholar

[88]

A. Debussche and E. Faou, Modified energy for split-step methods applied to the linear Schrödinger equations,, SIAM J. Numer. Anal., 47 (2009), 3705.  doi: 10.1137/080744578.  Google Scholar

[89]

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.046706.  Google Scholar

[90]

R. J. Dodd, Approximate solutions of the nonlinear Schrödinger equation for ground and excited sates for Bose-Einstein condensates,, J. Res. Natl. Inst. Stand. Technol., 101 (1996), 545.  doi: 10.6028/jres.101.054.  Google Scholar

[91]

Q. Du, Numerical computations of quantized vortices in Bose-Einstein condensate,, in, (2002), 155.  doi: 10.1007/978-1-4615-0113-8_11.  Google Scholar

[92]

Q. Du and F. H. Lin, Numerical approximations of a norm preserving gradient flow and applications to an optimal partition problem,, Nonlinearity, 22 (2009), 67.  doi: 10.1088/0951-7715/22/1/005.  Google Scholar

[93]

M. Edwards and K. Burnett, Numerical solution of the nonlinear Schrödinger equation for small samples of neutral atoms,, Phys. Rev. A, 51 (1995).   Google Scholar

[94]

A. Einstein, Quantentheorie des einatomigen idealen gases,, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 22 (1924), 261.   Google Scholar

[95]

A. Einstein, Quantentheorie des einatomigen idealen gases, zweite abhandlung,, Sitzungs-berichte der Preussischen Akademie der Wissenschaften, 1 (1925), 3.   Google Scholar

[96]

L. Erdős, B. Schlein and H. T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate,, Ann. Math., 172 (2010), 291.  doi: 10.4007/annals.2010.172.291.  Google Scholar

[97]

A. L. Fetter, Rotating trapped Bose-Einstein condensates,, Rev. Mod. Phys., 81 (2009), 647.   Google Scholar

[98]

A. L. Fetter and A. A. Svidzinsky, Vortices in trapped dilute Bose-Einstein condensate,, J. Phys.: Condens. Matter, 13 (2001), 135.  doi: 10.1088/0953-8984/13/12/201.  Google Scholar

[99]

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner and T. J. Greytak, Bose-Einstein condensation of atomic hydrogen,, Phys. Rev. Lett, 81 (1998).  doi: 10.1103/PhysRevLett.81.3811.  Google Scholar

[100]

J. J. Garcia-Ripoll and V. M. Perez-Garcia, Optimizing Schrödinger functional using Sobolev gradients: Applications to quantum mechanics and nonlinear optics,, SIAM J. Sci. Comput., 23 (2001), 1315.  doi: 10.1137/S1064827500377721.  Google Scholar

[101]

J. J. Garcia-Ripoll, V. M. Perez-Garcia and V. Vekslerchik, Construction of exact solutions by spatial translations in inhomogeneous nonlinear Schrödinger equations,, Phys. Rev. E, 64 (2001).  doi: 10.1103/PhysRevE.64.056602.  Google Scholar

[102]

S. A. Gardiner, D. Jaksch, R. Dum, J. I. Cirac and P. Zoller, Nonlinear matter wave dynamics with a chaotic potential,, Phys. Rev. A, 62 (2000).  doi: 10.1103/PhysRevA.62.023612.  Google Scholar

[103]

I. Gasser and P. A. Markowich, Quantum hydrodynamics, Winger transforms and the classical limit,, Assymptot. Anal., 14 (1997), 97.   Google Scholar

[104]

P. Gerard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 321.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[105]

S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of ultracold atomic Fermi gases,, Rev. Mod. Phys., 80 (2008), 1215.  doi: 10.1103/RevModPhys.80.1215.  Google Scholar

[106]

R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension,, Math. Comp., 58 (1992), 83.  doi: 10.1090/S0025-5718-1992-1106968-6.  Google Scholar

[107]

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, Bose-Einstein condensation of Chromium,, Phys. Rev. Lett., 94 (2005).  doi: 10.1103/PhysRevLett.94.160401.  Google Scholar

[108]

A. Griffin, T. Nikuni and E. Zaremba, "Bose-Condensed Gases at Finite Temperatures,", Cambridge University Press, (2009).  doi: 10.1017/CBO9780511575150.  Google Scholar

[109]

E. P. Gross, Structure of a quantized vortex in boson systems,, Nuovo. Cimento., 20 (1961), 454.  doi: 10.1007/BF02731494.  Google Scholar

[110]

Paul Lee Halkyard, "Dynamics in Cold Atomic Gases: Resonant Behaviour of the Quantum Delta-Kicked Accelerator and Bose-Einstein Condensates in Ring Traps,", Ph.D Thesis, (2010).   Google Scholar

[111]

C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term,, Math. Methods Appl. Sci., 31 (2008), 655.  doi: 10.1002/mma.931.  Google Scholar

[112]

C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions,, J. Math. Phys., 48 (2007).   Google Scholar

[113]

D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 1539.   Google Scholar

[114]

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,, SIAM Rev. Chronicle, 15 (1973).   Google Scholar

[115]

N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension,, Differ. Integral Equ., 2 (1994), 453.   Google Scholar

[116]

C. E. Hecht, The possible superfluid behaviour of hydrogen atom gases and liquids,, Physica, 25 (1959), 1159.   Google Scholar

[117]

T. L. Ho, Spinor Bose condensates in optical traps,, Phys. Rev. Lett., 81 (1998), 742.   Google Scholar

[118]

M. Holthaus, Towards coherent control of a Bose-Einstein condensate in a double well,, Phys. Rev. A, 64 (2001).   Google Scholar

[119]

R. Ignat and V. Millot, The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate,, J. Funct. Anal., 233 (2006), 260.  doi: 10.1016/j.jfa.2005.06.020.  Google Scholar

[120]

R. Ignat and V. Millot, Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate,, Rev. Math. Phys., 18 (2006), 119.  doi: 10.1142/S0129055X06002607.  Google Scholar

[121]

D. Jaksch, S. A. Gardiner, K. Schulze, J. I. Cirac and P. Zoller, Uniting Bose-Einstein condensates in optical resonators,, Phys. Rev. Lett., 86 (2001), 4733.  doi: 10.1103/PhysRevLett.86.4733.  Google Scholar

[122]

S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing nonlinear Schrödinger hierarchy,, Comm. Pure Appl. Math., 52 (1999), 613.  doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L.  Google Scholar

[123]

G. Karrali and C. Sourdis, The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit,, preprint, ().   Google Scholar

[124]

Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein condensates,, Phys. Rep., ().   Google Scholar

[125]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations,, Invent. Math., 158 (2004), 343.  doi: 10.1007/s00222-004-0373-4.  Google Scholar

[126]

W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser,, Rev. Mod. Phys., 74 (2002), 1131.  doi: 10.1103/RevModPhys.74.1131.  Google Scholar

[127]

A. Klein, D. Jaksch, Y. Zhang and W. Bao, Dynamics of vortices in weakly interacting Bose-Einstein condensates,, Phys. Rev. A, 76 (2007).   Google Scholar

[128]

I. Kyza, C. Makridakis and M. Plexousakis, Error control for time-splitting spectral approximations of the semiclassical Schrödinger equation,, IMA J. Numer. Anal., 31 (2011), 416.   Google Scholar

[129]

C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5257.   Google Scholar

[130]

A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts,, Rev. Mod. Phys., 73 (2001), 307.   Google Scholar

[131]

E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Mathematics, (2001).   Google Scholar

[132]

E. H. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases,, Comm. Math. Phys., 264 (2006), 505.  doi: 10.1007/s00220-006-1524-9.  Google Scholar

[133]

E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, "The Mathematics of the Bose Gas and its Condensation,", Oberwolfach Seminars 34, (2005).   Google Scholar

[134]

E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional,, Phys. Rev. A, 61 (2000).   Google Scholar

[135]

E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas,, Comm. Math. Phys., 252 (2004), 485.   Google Scholar

[136]

Fong Yin Lim, "Analytical and Numerical Studies of Bose-Einstein Condensates,", Ph.D Thesis, (2008).   Google Scholar

[137]

H. L. Liu and C. Sparber, Rigorious derivation of the hydrodynamical equations for rotating superfluids,, Math. Models Methods Appl. Sci., 18 (2008), 689.   Google Scholar

[138]

W. M. Liu, B. Wu and Q. Niu, Nonlinear effects in interference of Bose-Einstein condensates,, Phys. Rev. Lett., 84 (2000), 2294.   Google Scholar

[139]

F. London, The $\lambda$-phenomenon of liquid helium and the Bose-Einstein degeneracy,, Nature, 141 (1938), 643.   Google Scholar

[140]

M. Lu, N. Q. Burdick, S.-H. Youn and B. L. Lev, A strongly dipolar Bose-Einstein condensate of Dysprosium,, Phy. Rev. Lett., 107 (2011).   Google Scholar

[141]

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations,, Math. Comp., 77 (2008), 2141.  doi: 10.1090/S0025-5718-08-02101-7.  Google Scholar

[142]

K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate,, Phys. Rev. Lett., 84 (2000), 806.  doi: 10.1103/PhysRevLett.84.806.  Google Scholar

[143]

M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate,, Phys. Rev. Lett., 83 (1999), 2498.  doi: 10.1103/PhysRevLett.83.2498.  Google Scholar

[144]

C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling,, Phys. Rev. Lett., 78 (1997), 586.  doi: 10.1103/PhysRevLett.78.586.  Google Scholar

[145]

G. J. Milburn, J. Corney, E. M. Wright and D. F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential,, Phys. Rev. A, 55 (1997).  doi: 10.1103/PhysRevA.55.4318.  Google Scholar

[146]

B. Min, T. Li, M. Rosenkranz and W. Bao, Subdiffusive spreading of a Bose-Einstein condensate in random potentials,, Phys. Rev. A, 86 (2012).   Google Scholar

[147]

O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices,, Rev. Mod. Phys., 78 (2006), 179.  doi: 10.1103/RevModPhys.78.179.  Google Scholar

[148]

C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential,, BIT, 49 (2009), 199.  doi: 10.1007/s10543-009-0215-2.  Google Scholar

[149]

R. Ozeri, N. Katz, J. Steinhauer and N. Davidson, Colloquium: Bulk Bogoliubov excitations in a Bose-Einstein condensate,, Rev. Mod. Phys., 77 (2005), 187.  doi: 10.1103/RevModPhys.77.187.  Google Scholar

[150]

N. G. Parker, C. Ticknor, A. M. Martin and D. H. J. O'Dell1, Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate,, Phys. Rev. A, 79 (2009).  doi: 10.1103/PhysRevA.79.013617.  Google Scholar

[151]

C. J. Pethick and H. Smith, "Bose-Einstein Condensation in Dilute Gases,", Cambridge University Press, (2002).   Google Scholar

[152]

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas,, Soviet Phys. JETP, 13 (1961), 451.   Google Scholar

[153]

L. P. Pitaevskii and S. Stringari, "Bose-Einstein Condensation,", Clarendon Press, (2003).   Google Scholar

[154]

A. Posazhennikova, Colloquium: Weakly interacting, dilute Bose gases in 2D,, Rev. Mod. Phys., 78 (2006), 1111.  doi: 10.1103/RevModPhys.78.1111.  Google Scholar

[155]

J. L. Roberts, N. R. Claussen, S. L. Cornish and C. E. Wieman, Magnetic field dependence of ultracold inelastic collisions near a Feshbach resonance,, Phys. Rev. Lett., 85 (2000), 728.  doi: 10.1103/PhysRevLett.85.728.  Google Scholar

[156]

M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable,, J. Comput. Phys., 104 (1993), 277.  doi: 10.1006/jcph.1993.1029.  Google Scholar

[157]

S. Ronen, D. C. E. Bortolotti and J. L. Bohn, Bogoliubov modes of a dipolar condensate in a cylindrical trap,, Phys. Rev. A, 74 (2006).  doi: 10.1103/PhysRevA.74.013623.  Google Scholar

[158]

M. Rosenkranz, D. Jaksch, F. Y. Lim and W. Bao, Self-trapping of Bose-Einstein condensate expanding into shallow optical lattices,, Phys. Rev. A, 77 (2008).  doi: 10.1103/PhysRevA.77.063607.  Google Scholar

[159]

N. Rougerie, Vortex rings in fast rotating Bose-Einstein condensates,, Arch. Ration. Mech. Anal., 203 (2012), 69.  doi: 10.1007/s00205-011-0447-6.  Google Scholar

[160]

P. A. Ruprecht, M. J. Holland, K. Burnett and M. Edwards, Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms,, Phys. Rev. A, 51 (1995), 4704.  doi: 10.1103/PhysRevA.51.4704.  Google Scholar

[161]

C. Ryu, M. F. Andersen, P. Cladé, Vasant Natarajan, K. Helmerson and W. D. Phillips, Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap,, Phys. Rev. Lett., 99 (2007).  doi: 10.1103/PhysRevLett.99.260401.  Google Scholar

[162]

H. Saito and M. Ueda, Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction,, Phys. Rev. Lett., 86 (2001), 1406.  doi: 10.1103/PhysRevLett.86.1406.  Google Scholar

[163]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", $2^{nd}$ edition, 59 (2007).   Google Scholar

[164]

L. Santos, G. Shlyapnikov, P. Zoller and M. Lewenstein, Bose-Einstein condesation in trapped dipolar gases,, Phys. Rev. Lett., 85 (2000), 1791.  doi: 10.1103/PhysRevLett.85.1791.  Google Scholar

[165]

R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas,, Comm. Math. Phys., 229 (2002), 491.  doi: 10.1007/s00220-002-0695-2.  Google Scholar

[166]

J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions,, SIAM J. Numer. Anal., 38 (2000), 1113.  doi: 10.1137/S0036142999362936.  Google Scholar

[167]

J. Shen and T. Tang, "Spectral and High-Order Methods with Applications,", Science Press, (2006).   Google Scholar

[168]

J. Shen, T. Tang and L.-L. Wang, "Spectral Methods. Algorithms, Analysis and Applications,", Springer, (2011).   Google Scholar

[169]

J. Shen and Z.-Q. Wang, Error analysis of the Strang time-splitting Laguerre-Hermite/Hermite collocation methods for the Gross-Pitaevskii equation,, J. Found. Comput. Math., ().   Google Scholar

[170]

I. F. Silvera and J. T. M. Walraven, Stabilization of atomic Hydrogen at low temperature,, Phys. Rev. Lett., 44 (1980), 164.  doi: 10.1103/PhysRevLett.44.164.  Google Scholar

[171]

T. P. Simula, A. A. Penckwitt and R. J. Ballagh, Giant vortex lattice deformation in rapidly rotating Bose-Einstein condensates,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.060401.  Google Scholar

[172]

C. Sparber, Effective mass theorems for nonlinear Schrödinger equations,, SIAM J. Appl. Math., 66 (2006), 820.  doi: 10.1137/050623759.  Google Scholar

[173]

D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard and W. Ketterle, Excitation of phonons in a Bose-Einstein condensate by light scattering,, Phys. Rev. Lett., 83 (1999), 2876.  doi: 10.1103/PhysRevLett.83.2876.  Google Scholar

[174]

G. Strang, On the construction and comparison of difference schemes,, SIAM J. Numer. Anal., 5 (1968), 506.  doi: 10.1137/0705041.  Google Scholar

[175]

R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations,, Duke Math. J., 44 (1977), 705.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[176]

C. Sulem and P. L. Sulem, "The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,", Springer-Verlag, (1999).   Google Scholar

[177]

G. Szegö, "Orthogonal Polynomials,", $4^{th}$ edition, 23 (1975).   Google Scholar

[178]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations, II. Numerical, nonlinear Schrödinger equation,, J. Comput. Phys., 55 (1984), 203.  doi: 10.1016/0021-9991(84)90003-2.  Google Scholar

[179]

M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schr\"odinger equations,, SIAM J. Numer. Anal., 46 (2008), 2022.  doi: 10.1137/060674636.  Google Scholar

[180]

V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Springer-Verlag, (1997).   Google Scholar

[181]

I. Tikhonenkov, B. A. Malomed and A. Vardi, Anisotropic solitons in dipolar Bose-Einstein condensates,, Phys. Rev. Lett., 100 (2008).  doi: 10.1103/PhysRevLett.100.090406.  Google Scholar

[182]

S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel and Y. Yamamoto, Observation of Bogoliubov excitations in exciton-polariton condensates,, Nature Phys., 4 (2008), 700.  doi: 10.1038/nphys1034.  Google Scholar

[183]

Hanquan Wang, "Quantized Vortices States and Dyanmics in Bose-Einstein Condensates,", PhD Thesis, (2006).   Google Scholar

[184]

H. Wang, A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates,, J. Comput. Appl. Math., 205 (2007), 88.  doi: 10.1016/j.cam.2006.04.042.  Google Scholar

[185]

H. Wang, An efficient numerical method for computing dynamics of spin F = 2 Bose-Einstein condensates,, J. Comput. Phys., 230 (2011), 6155.  doi: 10.1016/j.jcp.2011.04.021.  Google Scholar

[186]

H. Wang and W. Xu, An efficient numerical method for simulating the dynamics of coupling Bose-Einstein condensates in optical resonators,, Comput. Phys. Comm., 182 (2011), 706.  doi: 10.1016/j.cpc.2010.12.010.  Google Scholar

[187]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.  doi: 10.1007/BF01208265.  Google Scholar

[188]

J. Williams, R. Walser, J. Cooper, E. Cornell and M. Holland, Nonlinear Josephson-type oscillations of a driven two-component Bose-Einstein condensate,, Phys. Rev. A, 59 (1999).  doi: 10.1103/PhysRevA.59.R31.  Google Scholar

[189]

B. Xiong, J. Gong, H. Pu, W. Bao and B. Li, Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential,, Phys. Rev. A, 79 (2009).  doi: 10.1103/PhysRevA.79.013626.  Google Scholar

[190]

S. Yi and L. You, Trapped atomic condensates with anisotropic interactions,, Phys. Rev. A, 61 (2000).  doi: 10.1103/PhysRevA.61.041604.  Google Scholar

[191]

S. Yi and L. You, Expansion of a dipolar condensate,, Phys. Rev. A, 67 (2003).  doi: 10.1103/PhysRevA.67.045601.  Google Scholar

[192]

H. Yoshida, Construction of higher order symplectic integrators,, Phys. Lett. A, 150 (1990), 262.  doi: 10.1016/0375-9601(90)90092-3.  Google Scholar

[193]

E. Zaremba, T. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperature,, J. Low Temp. Phys., 116 (1999).  doi: 10.1023/A:1021846002995.  Google Scholar

[194]

R. Zeng and Y. Zhang, Efficiently computing vortex lattices in fast rotating Bose-Einstein condensates,, Comput. Phys. Commun., 180 (2009), 854.  doi: 10.1016/j.cpc.2008.12.003.  Google Scholar

[195]

P. Zhang, "Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations,", Courant Lect. Notes Math., 17 (2008).   Google Scholar

[196]

Yanzhi Zhang, "Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensation,", PhD Thesis, (2006).   Google Scholar

[197]

Y. Zhang and W. Bao, Dynamics of the center of mass in rotating Bose-Einstein condensates,, Appl. Numer. Math., 57 (2007), 697.  doi: 10.1016/j.apnum.2006.07.011.  Google Scholar

[198]

Y. Zhang, W. Bao and H. Li, Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation,, Phys. D, 234 (2007), 49.  doi: 10.1016/j.physd.2007.06.026.  Google Scholar

[1]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[2]

Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793

[3]

Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214

[4]

Pedro J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, Dimitri J. Frantzeskakis, P.G. Kevrekidis. Vortex interaction dynamics in trapped Bose-Einstein condensates. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1589-1615. doi: 10.3934/cpaa.2011.10.1589

[5]

Patrick Henning, Johan Wärnegård. Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinetic & Related Models, 2019, 12 (6) : 1247-1271. doi: 10.3934/krm.2019048

[6]

Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059

[7]

Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905

[8]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[9]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[10]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[11]

Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225

[12]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

[13]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[14]

Norman E. Dancer. On the converse problem for the Gross-Pitaevskii equations with a large parameter. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2481-2493. doi: 10.3934/dcds.2014.34.2481

[15]

Thomas Chen, Nataša Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 715-739. doi: 10.3934/dcds.2010.27.715

[16]

E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120

[17]

Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic & Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029

[18]

Florian Méhats, Christof Sparber. Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5097-5118. doi: 10.3934/dcds.2016021

[19]

P.G. Kevrekidis, Dimitri J. Frantzeskakis. Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1199-1212. doi: 10.3934/dcdss.2011.4.1199

[20]

Weizhu Bao, Loïc Le Treust, Florian Méhats. Dimension reduction for dipolar Bose-Einstein condensates in the strong interaction regime. Kinetic & Related Models, 2017, 10 (3) : 553-571. doi: 10.3934/krm.2017022

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (104)

Other articles
by authors

[Back to Top]