-
Previous Article
Diffusion asymptotics of a kinetic model for gaseous mixtures
- KRM Home
- This Issue
- Next Article
Mathematical theory and numerical methods for Bose-Einstein condensation
1. | Department of Mathematics and Center for Computational Science and, Engineering, National University of Singapore, Singapore 119076, Singapore |
2. | Department of Mathematics, National University of Singapore, Singapore 119076; and Beijing Computational Science, Research Center, Beijing 100084, China |
References:
[1] |
J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates,, Science, 292 (2001), 476.
doi: 10.1126/science.1060182. |
[2] |
S. K. Adhikari and P. Muruganandam, Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation,, J. Phys. B: At. Mol. Opt. Phys., 35 (2002), 2831.
doi: 10.1088/0953-4075/35/12/317. |
[3] |
S. K. Adhikari and P. Muruganandam, Mean-field model for the interference of matter-waves from a three-dimensional optical trap,, Phys. Lett. A, 310 (2003), 229.
doi: 10.1016/S0375-9601(03)00335-9. |
[4] |
A. Aftalion, "Vortices in Bose-Einstein Condensates,", Progress in Nonlinear Differential Equations and their Applications, 67 (2006).
|
[5] |
A. Aftalion and Q. Du, Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime,, Phys. Rev. A, 64 (2001).
doi: 10.1103/PhysRevA.64.063603. |
[6] |
A. Aftalion, Q. Du and Y. Pomeau, Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose Einstein condensate,, Phys. Rev. Lett., 91 (2003).
doi: 10.1103/PhysRevLett.91.090407. |
[7] |
A. Aftalion, R. Jerrard and J. Royo-Letelier, Non-existence of vortices in the small density region of a condensate,, J. Funct. Anal., 260 (2011), 2387.
doi: 10.1016/j.jfa.2010.12.003. |
[8] |
K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm and F. Ferlaino, Bose-Einstein condensation of Erbium,, Phys. Rev. Lett., 108 (2012).
doi: 10.1103/PhysRevLett.108.210401. |
[9] |
G. Akrivis, Finite difference discretization of the cubic Schrödinger equation,, IMA J. Numer. Anal., 13 (1993), 115.
doi: 10.1093/imanum/13.1.115. |
[10] |
G. Akrivis, V. Dougalis and O. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numer. Math., 59 (1991), 31.
doi: 10.1007/BF01385769. |
[11] |
J. O. Andersen, Theory of the weakly interacting Bose gas,, Rev. Mod. Phys., 76 (2004), 599.
doi: 10.1103/RevModPhys.76.599. |
[12] |
M. H. Anderson, J. R. Ensher, M. R. Matthewa, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,, Science, 269 (1995), 198.
doi: 10.1126/science.269.5221.198. |
[13] |
P. Antonelli, D. Marahrens and C. Sparber, On the Cauchy problem for nonlinear Schrödinger equations with rotation,, Discrete Contin. Dyn. Syst., 32 (2012), 703.
doi: 10.3934/dcds.2012.32.703. |
[14] |
W. Bao, The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics,, in, 9 (2007), 141.
|
[15] |
W. Bao, Ground states and dynamics of multicomponent Bose-Einstein condensates,, Multiscale Model. Simul., 2 (2004), 210.
doi: 10.1137/030600209. |
[16] |
W. Bao, Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions,, Methods Appl. Anal., 11 (2004), 367.
|
[17] |
W. Bao, Analysis and efficient computation for the dynamics of two-component Bose-Einstein condensates: Stationary and time dependent Gross-Pitaevskii equations,, Contemp. Math., 473 (2008), 1.
doi: 10.1090/conm/473/09222. |
[18] |
W. Bao, N. Ben Abdallah and Y. Cai, Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement,, SIAM J. Math. Anal., 44 (2012), 1713.
doi: 10.1137/110850451. |
[19] |
W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction,, East Asia J. Appl. Math., 1 (2010), 49. Google Scholar |
[20] |
W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator,, SIAM J Numer. Anal., 50 (2012), 492.
doi: 10.1137/110830800. |
[21] |
W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation,, Math. Comp., 82 (2013), 99.
|
[22] |
W. Bao and Y. Cai, Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator,, preprint., (). Google Scholar |
[23] |
W. Bao, Y. Cai and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates,, J. Comput. Phys., 229 (2010), 7874.
doi: 10.1016/j.jcp.2010.07.001. |
[24] |
W. Bao and M. H. Chai, A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems,, Commun. Comput. Phys., 4 (2008), 135.
|
[25] |
W. Bao, I. Chern and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates,, J. Comput. Phys., 219 (2006), 836.
doi: 10.1016/j.jcp.2006.04.019. |
[26] |
W. Bao, I. Chern and Y. Zhang, Efficient methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations,, preprint., (). Google Scholar |
[27] |
W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674.
doi: 10.1137/S1064827503422956. |
[28] |
W. Bao, Q. Du and Y. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation,, SIAM J. Appl. Math., 66 (2006), 758.
doi: 10.1137/050629392. |
[29] |
W. Bao, Y. Ge, D. Jaksch, P. A. Markowich and R. M. Weishäupl, Convergence rate of dimension reduction in Bose-Einstein condensates,, Comput. Phys. Comm., 177 (2007), 832.
doi: 10.1016/j.cpc.2007.06.015. |
[30] |
W. Bao and D. Jaksch, An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity,, SIAM J. Numer. Anal., 41 (2003), 1406.
doi: 10.1137/S0036142902413391. |
[31] |
W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation,, J. Comput. Phys., 187 (2003), 318.
doi: 10.1016/S0021-9991(03)00102-5. |
[32] |
W. Bao, D. Jaksch and P. A. Markowich, Three dimensional simulation of jet formation in collapsing condensates,, J. Phys. B: At. Mol. Opt. Phys., 37 (2004), 329.
doi: 10.1088/0953-4075/37/2/003. |
[33] |
W. Bao, S. Jin and P. A. Markowich, On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime,, J. Comput. Phys., 175 (2002), 487.
doi: 10.1006/jcph.2001.6956. |
[34] |
W. Bao, S. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes,, SIAM J. Sci. Comput., 25 (2003), 27.
doi: 10.1137/S1064827501393253. |
[35] |
W. Bao, H.-L. Li and J. Shen, A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates,, SIAM J. Sci. Comput., 31 (2009), 3685.
doi: 10.1137/080739811. |
[36] |
W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow,, SIAM J. Sci. Comput., 30 (2008), 1925.
doi: 10.1137/070698488. |
[37] |
W. Bao, F. Y. Lim and Y. Zhang, Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime,, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 495.
|
[38] |
W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767.
doi: 10.1142/S0218202505000534. |
[39] |
W. Bao, L. Pareschi and P. A. Markowich, Quantum kinetic theory: modeling and numerics for Bose-Einstein condensation,, in, (2004), 287.
|
[40] |
W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2020.
doi: 10.1137/030601211. |
[41] |
W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates,, J. Comput. Phys., 227 (2008), 9778.
doi: 10.1016/j.jcp.2008.07.017. |
[42] |
W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation,, J. Comput. Phys., (). Google Scholar |
[43] |
W. Bao and W. Tang, Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional,, J. Comput. Phys., 187 (2003), 230.
doi: 10.1016/S0021-9991(03)00097-4. |
[44] |
W. Bao and H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates,, J. Comput. Phys., 217 (2006), 612.
doi: 10.1016/j.jcp.2006.01.020. |
[45] |
W. Bao and H. Wang, A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates,, SIAM J. Numer. Anal., 45 (2007), 2177.
doi: 10.1137/070681624. |
[46] |
W. Bao, H. Wang and P. A. Markowich, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates,, Commun. Math. Sci., 3 (2005), 57.
|
[47] |
W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation,, Math. Models Methods Appl. Sci., 15 (2005), 1863.
doi: 10.1142/S021820250500100X. |
[48] |
W. Bao and Y. Zhang, Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates,, Methods Appl. Anal., 17 (2010), 49.
|
[49] |
M. A. Baranov, M. Dalmonte, G. Pupillo and P. Zolle, Condensed matter theory of dipolar quantum gases,, Chem. Rev., 112 (2012), 5012.
doi: 10.1021/cr2003568. |
[50] |
M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate,, Phys. Rev. Lett., 87 (2001).
doi: 10.1103/PhysRevLett.87.010404. |
[51] |
N. Ben Abdallah, Y. Cai, F. Castella and F. M\'ehats, Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential,, Kinet. Relat. Models, 4 (2011), 831.
doi: 10.3934/krm.2011.4.831. |
[52] |
N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost periodicity,, J. Diff. Eqn., 245 (2008), 154.
doi: 10.1016/j.jde.2008.02.002. |
[53] |
N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189.
doi: 10.1137/040614554. |
[54] |
C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation,, SIAM J. Numer. Anal., 40 (2002), 26.
doi: 10.1137/S0036142900381497. |
[55] |
I. Bialynicki-Birula and Z. Bialynicki-Birula, Center-of-mass motion in the many-body theory of Bose-Einstein condensates,, Phys. Rev. A, 65 (2002).
doi: 10.1103/PhysRevA.65.063606. |
[56] |
I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases,, Rev. Mod. Phys., 80 (2008), 885.
doi: 10.1103/RevModPhys.80.885. |
[57] |
N. N. Bogoliubov, On the theory of superfluidity,, J. Phys. USSR, 11 (1947), 23.
|
[58] |
S. N. Bose, Plancks gesetz und lichtquantenhypothese,, Zeitschrift fr Physik, 3 (1924), 178. Google Scholar |
[59] |
C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction,, Phys. Rev. Lett., 75 (1995), 1687.
doi: 10.1103/PhysRevLett.75.1687. |
[60] |
C. C. Bradley, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of Lithium: Observation of limited condensates,, Phys. Rev. Lett., 78 (1997), 985.
doi: 10.1103/PhysRevLett.78.985. |
[61] |
J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz and K. Promislow, Stability of repulsive Bose-Einstein condensates in a periodic potential,, Phys. Rev. E, 63 (2001).
doi: 10.1103/PhysRevE.63.036612. |
[62] |
M. Bruderer, W. Bao and D. Jaksch, Self-trapping of impurities in Bose-Einstein condensates: Strong attractive and repulsive coupling,, EPL, 82 (2008).
doi: 10.1209/0295-5075/82/30004. |
[63] |
L. Cafferelli and F. H. Lin, An optimal partition problem for eigenvalues,, J. Sci. Comput., 31 (2007), 5.
doi: 10.1007/s10915-006-9114-8. |
[64] |
Yongyong Cai, "Mathematical Theory and Numerical Methods for the Gross-Piatevskii Equations and Applications,", Ph.D Thesis, (2011). Google Scholar |
[65] |
Y. Cai, M. Rosenkranz, Z. Lei and W. Bao, Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions,, Phys. Rev. A, 82 (2010).
doi: 10.1103/PhysRevA.82.043623. |
[66] |
M. Caliari and M. Squassina, Location and phase segregation of ground and excited states for 2D Gross-Pitaevskii systems,, Dynamics of PDE, 5 (2008), 117.
|
[67] |
P. Capuzzi and S. Hernandez, Bose-Einstein condensation in harmonic double wells,, Phys. Rev. A, 59 (1999).
doi: 10.1103/PhysRevA.59.1488. |
[68] |
B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates,, Phys. Rev. Lett., 83 (1999), 895.
doi: 10.1103/PhysRevLett.83.895. |
[69] |
R. Carles, "Semi-Classical Analysis for Nonlinear Schrödinger Equations,", World Scentific, (2008). Google Scholar |
[70] |
R. Carles, P. A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves,, J. Statist. Phys., 117 (2004), 343.
doi: 10.1023/B:JOSS.0000044070.34410.17. |
[71] |
R. Carles, P. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases,, Nonlinearity, 21 (2008), 2569.
doi: 10.1088/0951-7715/21/11/006. |
[72] |
L. D. Carr, C. W. Clark and W. P. Reinhardt, Stationary solutions of the one dimensional nonlinear Schrodinger equation I. case of repulsive nonlinearity,, Phys. Rev. A, 62 (2000).
doi: 10.1103/PhysRevA.62.063610. |
[73] |
T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lect. Notes Math., (2003).
|
[74] |
M. M. Cerimele, M. L. Chiofalo, F. Pistella, S. Succi and M. P. Tosi, Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates,, Phys. Rev. E, 62 (2000), 1382.
doi: 10.1103/PhysRevE.62.1382. |
[75] |
M. M. Cerimele, F. Pistella and S. Succi, Particle-inspired scheme for the Gross-Pitaevski equation: An application to Bose-Einstein condensation,, Comput. Phys. Comm., 129 (2000), 82.
doi: 10.1016/S0010-4655(00)00095-3. |
[76] |
Q. Chang, B. Guo and H. Jiang, Finite difference method for generalized Zakharov equations,, Math. Comp., 64 (1995), 537.
doi: 10.1090/S0025-5718-1995-1284664-5. |
[77] |
S. M. Chang, W. W. Lin and S. F. Shieh, Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate,, J. Comput. Phys., 202 (2005), 367.
doi: 10.1016/j.jcp.2004.07.012. |
[78] |
M. L. Chiofalo, S. Succi and M. P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm,, Phys. Rev. E, 62 (2000), 7438.
doi: 10.1103/PhysRevE.62.7438. |
[79] |
D. I. Choi and Q. Niu, Bose-Einstein condensation in an optical lattice,, Phys. Rev. Lett., 82 (1999), 2022.
doi: 10.1103/PhysRevLett.82.2022. |
[80] |
E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments,, Rev. Mod. Phys., 74 (2002), 875.
doi: 10.1103/RevModPhys.74.875. |
[81] |
M. Correggi, P. Florian, N. Rougerie and J. Yngvason, Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices,, Phys. Rev. A, 84 (2011).
doi: 10.1103/PhysRevA.84.053614. |
[82] |
M. Correggi, N. Rougerie and J. Yngvason, The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate,, Comm. Math. Phys., 303 (2011), 451.
doi: 10.1007/s00220-011-1202-4. |
[83] |
M. Correggi and J. Yngvason, Energy and vorticity in fast rotating Bose-Einstein condensates,, J. Phys. A, 41 (2008).
doi: 10.1088/1751-8113/41/44/445002. |
[84] |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.
doi: 10.1103/RevModPhys.71.463. |
[85] |
M. J. Davis and P. B. Blakie, Critical temperature of a trapped Bose gas: Comparison of theory and experiment,, Phys. Rev. Lett., 96 (2006).
doi: 10.1103/PhysRevLett.96.060404. |
[86] |
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969.
doi: 10.1103/PhysRevLett.75.3969. |
[87] |
M. J. Davis, S. A. Morgan and K. Burnett, Simulations of Bose-fields at finite temperature,, Phys. Rev. Lett., 87 (2001).
doi: 10.1103/PhysRevLett.87.160402. |
[88] |
A. Debussche and E. Faou, Modified energy for split-step methods applied to the linear Schrödinger equations,, SIAM J. Numer. Anal., 47 (2009), 3705.
doi: 10.1137/080744578. |
[89] |
C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap,, Phys. Rev. E, 67 (2003).
doi: 10.1103/PhysRevE.67.046706. |
[90] |
R. J. Dodd, Approximate solutions of the nonlinear Schrödinger equation for ground and excited sates for Bose-Einstein condensates,, J. Res. Natl. Inst. Stand. Technol., 101 (1996), 545.
doi: 10.6028/jres.101.054. |
[91] |
Q. Du, Numerical computations of quantized vortices in Bose-Einstein condensate,, in, (2002), 155.
doi: 10.1007/978-1-4615-0113-8_11. |
[92] |
Q. Du and F. H. Lin, Numerical approximations of a norm preserving gradient flow and applications to an optimal partition problem,, Nonlinearity, 22 (2009), 67.
doi: 10.1088/0951-7715/22/1/005. |
[93] |
M. Edwards and K. Burnett, Numerical solution of the nonlinear Schrödinger equation for small samples of neutral atoms,, Phys. Rev. A, 51 (1995). Google Scholar |
[94] |
A. Einstein, Quantentheorie des einatomigen idealen gases,, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 22 (1924), 261. Google Scholar |
[95] |
A. Einstein, Quantentheorie des einatomigen idealen gases, zweite abhandlung,, Sitzungs-berichte der Preussischen Akademie der Wissenschaften, 1 (1925), 3. Google Scholar |
[96] |
L. Erdős, B. Schlein and H. T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate,, Ann. Math., 172 (2010), 291.
doi: 10.4007/annals.2010.172.291. |
[97] |
A. L. Fetter, Rotating trapped Bose-Einstein condensates,, Rev. Mod. Phys., 81 (2009), 647. Google Scholar |
[98] |
A. L. Fetter and A. A. Svidzinsky, Vortices in trapped dilute Bose-Einstein condensate,, J. Phys.: Condens. Matter, 13 (2001), 135.
doi: 10.1088/0953-8984/13/12/201. |
[99] |
D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner and T. J. Greytak, Bose-Einstein condensation of atomic hydrogen,, Phys. Rev. Lett, 81 (1998).
doi: 10.1103/PhysRevLett.81.3811. |
[100] |
J. J. Garcia-Ripoll and V. M. Perez-Garcia, Optimizing Schrödinger functional using Sobolev gradients: Applications to quantum mechanics and nonlinear optics,, SIAM J. Sci. Comput., 23 (2001), 1315.
doi: 10.1137/S1064827500377721. |
[101] |
J. J. Garcia-Ripoll, V. M. Perez-Garcia and V. Vekslerchik, Construction of exact solutions by spatial translations in inhomogeneous nonlinear Schrödinger equations,, Phys. Rev. E, 64 (2001).
doi: 10.1103/PhysRevE.64.056602. |
[102] |
S. A. Gardiner, D. Jaksch, R. Dum, J. I. Cirac and P. Zoller, Nonlinear matter wave dynamics with a chaotic potential,, Phys. Rev. A, 62 (2000).
doi: 10.1103/PhysRevA.62.023612. |
[103] |
I. Gasser and P. A. Markowich, Quantum hydrodynamics, Winger transforms and the classical limit,, Assymptot. Anal., 14 (1997), 97.
|
[104] |
P. Gerard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 321.
doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C. |
[105] |
S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of ultracold atomic Fermi gases,, Rev. Mod. Phys., 80 (2008), 1215.
doi: 10.1103/RevModPhys.80.1215. |
[106] |
R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension,, Math. Comp., 58 (1992), 83.
doi: 10.1090/S0025-5718-1992-1106968-6. |
[107] |
A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, Bose-Einstein condensation of Chromium,, Phys. Rev. Lett., 94 (2005).
doi: 10.1103/PhysRevLett.94.160401. |
[108] |
A. Griffin, T. Nikuni and E. Zaremba, "Bose-Condensed Gases at Finite Temperatures,", Cambridge University Press, (2009).
doi: 10.1017/CBO9780511575150. |
[109] |
E. P. Gross, Structure of a quantized vortex in boson systems,, Nuovo. Cimento., 20 (1961), 454.
doi: 10.1007/BF02731494. |
[110] |
Paul Lee Halkyard, "Dynamics in Cold Atomic Gases: Resonant Behaviour of the Quantum Delta-Kicked Accelerator and Bose-Einstein Condensates in Ring Traps,", Ph.D Thesis, (2010). Google Scholar |
[111] |
C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term,, Math. Methods Appl. Sci., 31 (2008), 655.
doi: 10.1002/mma.931. |
[112] |
C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions,, J. Math. Phys., 48 (2007).
|
[113] |
D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 1539. Google Scholar |
[114] |
R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,, SIAM Rev. Chronicle, 15 (1973). Google Scholar |
[115] |
N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension,, Differ. Integral Equ., 2 (1994), 453.
|
[116] |
C. E. Hecht, The possible superfluid behaviour of hydrogen atom gases and liquids,, Physica, 25 (1959), 1159. Google Scholar |
[117] |
T. L. Ho, Spinor Bose condensates in optical traps,, Phys. Rev. Lett., 81 (1998), 742. Google Scholar |
[118] |
M. Holthaus, Towards coherent control of a Bose-Einstein condensate in a double well,, Phys. Rev. A, 64 (2001). Google Scholar |
[119] |
R. Ignat and V. Millot, The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate,, J. Funct. Anal., 233 (2006), 260.
doi: 10.1016/j.jfa.2005.06.020. |
[120] |
R. Ignat and V. Millot, Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate,, Rev. Math. Phys., 18 (2006), 119.
doi: 10.1142/S0129055X06002607. |
[121] |
D. Jaksch, S. A. Gardiner, K. Schulze, J. I. Cirac and P. Zoller, Uniting Bose-Einstein condensates in optical resonators,, Phys. Rev. Lett., 86 (2001), 4733.
doi: 10.1103/PhysRevLett.86.4733. |
[122] |
S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing nonlinear Schrödinger hierarchy,, Comm. Pure Appl. Math., 52 (1999), 613.
doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L. |
[123] |
G. Karrali and C. Sourdis, The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit,, preprint, (). Google Scholar |
[124] |
Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein condensates,, Phys. Rep., (). Google Scholar |
[125] |
C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations,, Invent. Math., 158 (2004), 343.
doi: 10.1007/s00222-004-0373-4. |
[126] |
W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser,, Rev. Mod. Phys., 74 (2002), 1131.
doi: 10.1103/RevModPhys.74.1131. |
[127] |
A. Klein, D. Jaksch, Y. Zhang and W. Bao, Dynamics of vortices in weakly interacting Bose-Einstein condensates,, Phys. Rev. A, 76 (2007). Google Scholar |
[128] |
I. Kyza, C. Makridakis and M. Plexousakis, Error control for time-splitting spectral approximations of the semiclassical Schrödinger equation,, IMA J. Numer. Anal., 31 (2011), 416.
|
[129] |
C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5257. Google Scholar |
[130] |
A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts,, Rev. Mod. Phys., 73 (2001), 307. Google Scholar |
[131] |
E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Mathematics, (2001).
|
[132] |
E. H. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases,, Comm. Math. Phys., 264 (2006), 505.
doi: 10.1007/s00220-006-1524-9. |
[133] |
E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, "The Mathematics of the Bose Gas and its Condensation,", Oberwolfach Seminars 34, (2005).
|
[134] |
E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional,, Phys. Rev. A, 61 (2000). Google Scholar |
[135] |
E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas,, Comm. Math. Phys., 252 (2004), 485.
|
[136] |
Fong Yin Lim, "Analytical and Numerical Studies of Bose-Einstein Condensates,", Ph.D Thesis, (2008). Google Scholar |
[137] |
H. L. Liu and C. Sparber, Rigorious derivation of the hydrodynamical equations for rotating superfluids,, Math. Models Methods Appl. Sci., 18 (2008), 689.
|
[138] |
W. M. Liu, B. Wu and Q. Niu, Nonlinear effects in interference of Bose-Einstein condensates,, Phys. Rev. Lett., 84 (2000), 2294. Google Scholar |
[139] |
F. London, The $\lambda$-phenomenon of liquid helium and the Bose-Einstein degeneracy,, Nature, 141 (1938), 643. Google Scholar |
[140] |
M. Lu, N. Q. Burdick, S.-H. Youn and B. L. Lev, A strongly dipolar Bose-Einstein condensate of Dysprosium,, Phy. Rev. Lett., 107 (2011). Google Scholar |
[141] |
C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations,, Math. Comp., 77 (2008), 2141.
doi: 10.1090/S0025-5718-08-02101-7. |
[142] |
K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate,, Phys. Rev. Lett., 84 (2000), 806.
doi: 10.1103/PhysRevLett.84.806. |
[143] |
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate,, Phys. Rev. Lett., 83 (1999), 2498.
doi: 10.1103/PhysRevLett.83.2498. |
[144] |
C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling,, Phys. Rev. Lett., 78 (1997), 586.
doi: 10.1103/PhysRevLett.78.586. |
[145] |
G. J. Milburn, J. Corney, E. M. Wright and D. F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential,, Phys. Rev. A, 55 (1997).
doi: 10.1103/PhysRevA.55.4318. |
[146] |
B. Min, T. Li, M. Rosenkranz and W. Bao, Subdiffusive spreading of a Bose-Einstein condensate in random potentials,, Phys. Rev. A, 86 (2012). Google Scholar |
[147] |
O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices,, Rev. Mod. Phys., 78 (2006), 179.
doi: 10.1103/RevModPhys.78.179. |
[148] |
C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential,, BIT, 49 (2009), 199.
doi: 10.1007/s10543-009-0215-2. |
[149] |
R. Ozeri, N. Katz, J. Steinhauer and N. Davidson, Colloquium: Bulk Bogoliubov excitations in a Bose-Einstein condensate,, Rev. Mod. Phys., 77 (2005), 187.
doi: 10.1103/RevModPhys.77.187. |
[150] |
N. G. Parker, C. Ticknor, A. M. Martin and D. H. J. O'Dell1, Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate,, Phys. Rev. A, 79 (2009).
doi: 10.1103/PhysRevA.79.013617. |
[151] |
C. J. Pethick and H. Smith, "Bose-Einstein Condensation in Dilute Gases,", Cambridge University Press, (2002). Google Scholar |
[152] |
L. P. Pitaevskii, Vortex lines in an imperfect Bose gas,, Soviet Phys. JETP, 13 (1961), 451. Google Scholar |
[153] |
L. P. Pitaevskii and S. Stringari, "Bose-Einstein Condensation,", Clarendon Press, (2003).
|
[154] |
A. Posazhennikova, Colloquium: Weakly interacting, dilute Bose gases in 2D,, Rev. Mod. Phys., 78 (2006), 1111.
doi: 10.1103/RevModPhys.78.1111. |
[155] |
J. L. Roberts, N. R. Claussen, S. L. Cornish and C. E. Wieman, Magnetic field dependence of ultracold inelastic collisions near a Feshbach resonance,, Phys. Rev. Lett., 85 (2000), 728.
doi: 10.1103/PhysRevLett.85.728. |
[156] |
M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable,, J. Comput. Phys., 104 (1993), 277.
doi: 10.1006/jcph.1993.1029. |
[157] |
S. Ronen, D. C. E. Bortolotti and J. L. Bohn, Bogoliubov modes of a dipolar condensate in a cylindrical trap,, Phys. Rev. A, 74 (2006).
doi: 10.1103/PhysRevA.74.013623. |
[158] |
M. Rosenkranz, D. Jaksch, F. Y. Lim and W. Bao, Self-trapping of Bose-Einstein condensate expanding into shallow optical lattices,, Phys. Rev. A, 77 (2008).
doi: 10.1103/PhysRevA.77.063607. |
[159] |
N. Rougerie, Vortex rings in fast rotating Bose-Einstein condensates,, Arch. Ration. Mech. Anal., 203 (2012), 69.
doi: 10.1007/s00205-011-0447-6. |
[160] |
P. A. Ruprecht, M. J. Holland, K. Burnett and M. Edwards, Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms,, Phys. Rev. A, 51 (1995), 4704.
doi: 10.1103/PhysRevA.51.4704. |
[161] |
C. Ryu, M. F. Andersen, P. Cladé, Vasant Natarajan, K. Helmerson and W. D. Phillips, Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap,, Phys. Rev. Lett., 99 (2007).
doi: 10.1103/PhysRevLett.99.260401. |
[162] |
H. Saito and M. Ueda, Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction,, Phys. Rev. Lett., 86 (2001), 1406.
doi: 10.1103/PhysRevLett.86.1406. |
[163] |
J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", $2^{nd}$ edition, 59 (2007).
|
[164] |
L. Santos, G. Shlyapnikov, P. Zoller and M. Lewenstein, Bose-Einstein condesation in trapped dipolar gases,, Phys. Rev. Lett., 85 (2000), 1791.
doi: 10.1103/PhysRevLett.85.1791. |
[165] |
R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas,, Comm. Math. Phys., 229 (2002), 491.
doi: 10.1007/s00220-002-0695-2. |
[166] |
J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions,, SIAM J. Numer. Anal., 38 (2000), 1113.
doi: 10.1137/S0036142999362936. |
[167] |
J. Shen and T. Tang, "Spectral and High-Order Methods with Applications,", Science Press, (2006).
|
[168] |
J. Shen, T. Tang and L.-L. Wang, "Spectral Methods. Algorithms, Analysis and Applications,", Springer, (2011).
|
[169] |
J. Shen and Z.-Q. Wang, Error analysis of the Strang time-splitting Laguerre-Hermite/Hermite collocation methods for the Gross-Pitaevskii equation,, J. Found. Comput. Math., (). Google Scholar |
[170] |
I. F. Silvera and J. T. M. Walraven, Stabilization of atomic Hydrogen at low temperature,, Phys. Rev. Lett., 44 (1980), 164.
doi: 10.1103/PhysRevLett.44.164. |
[171] |
T. P. Simula, A. A. Penckwitt and R. J. Ballagh, Giant vortex lattice deformation in rapidly rotating Bose-Einstein condensates,, Phys. Rev. Lett., 92 (2004).
doi: 10.1103/PhysRevLett.92.060401. |
[172] |
C. Sparber, Effective mass theorems for nonlinear Schrödinger equations,, SIAM J. Appl. Math., 66 (2006), 820.
doi: 10.1137/050623759. |
[173] |
D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard and W. Ketterle, Excitation of phonons in a Bose-Einstein condensate by light scattering,, Phys. Rev. Lett., 83 (1999), 2876.
doi: 10.1103/PhysRevLett.83.2876. |
[174] |
G. Strang, On the construction and comparison of difference schemes,, SIAM J. Numer. Anal., 5 (1968), 506.
doi: 10.1137/0705041. |
[175] |
R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations,, Duke Math. J., 44 (1977), 705.
doi: 10.1215/S0012-7094-77-04430-1. |
[176] |
C. Sulem and P. L. Sulem, "The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,", Springer-Verlag, (1999).
|
[177] |
G. Szegö, "Orthogonal Polynomials,", $4^{th}$ edition, 23 (1975).
|
[178] |
T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations, II. Numerical, nonlinear Schrödinger equation,, J. Comput. Phys., 55 (1984), 203.
doi: 10.1016/0021-9991(84)90003-2. |
[179] |
M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schr\"odinger equations,, SIAM J. Numer. Anal., 46 (2008), 2022.
doi: 10.1137/060674636. |
[180] |
V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Springer-Verlag, (1997).
|
[181] |
I. Tikhonenkov, B. A. Malomed and A. Vardi, Anisotropic solitons in dipolar Bose-Einstein condensates,, Phys. Rev. Lett., 100 (2008).
doi: 10.1103/PhysRevLett.100.090406. |
[182] |
S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel and Y. Yamamoto, Observation of Bogoliubov excitations in exciton-polariton condensates,, Nature Phys., 4 (2008), 700.
doi: 10.1038/nphys1034. |
[183] |
Hanquan Wang, "Quantized Vortices States and Dyanmics in Bose-Einstein Condensates,", PhD Thesis, (2006). Google Scholar |
[184] |
H. Wang, A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates,, J. Comput. Appl. Math., 205 (2007), 88.
doi: 10.1016/j.cam.2006.04.042. |
[185] |
H. Wang, An efficient numerical method for computing dynamics of spin F = 2 Bose-Einstein condensates,, J. Comput. Phys., 230 (2011), 6155.
doi: 10.1016/j.jcp.2011.04.021. |
[186] |
H. Wang and W. Xu, An efficient numerical method for simulating the dynamics of coupling Bose-Einstein condensates in optical resonators,, Comput. Phys. Comm., 182 (2011), 706.
doi: 10.1016/j.cpc.2010.12.010. |
[187] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.
doi: 10.1007/BF01208265. |
[188] |
J. Williams, R. Walser, J. Cooper, E. Cornell and M. Holland, Nonlinear Josephson-type oscillations of a driven two-component Bose-Einstein condensate,, Phys. Rev. A, 59 (1999).
doi: 10.1103/PhysRevA.59.R31. |
[189] |
B. Xiong, J. Gong, H. Pu, W. Bao and B. Li, Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential,, Phys. Rev. A, 79 (2009).
doi: 10.1103/PhysRevA.79.013626. |
[190] |
S. Yi and L. You, Trapped atomic condensates with anisotropic interactions,, Phys. Rev. A, 61 (2000).
doi: 10.1103/PhysRevA.61.041604. |
[191] |
S. Yi and L. You, Expansion of a dipolar condensate,, Phys. Rev. A, 67 (2003).
doi: 10.1103/PhysRevA.67.045601. |
[192] |
H. Yoshida, Construction of higher order symplectic integrators,, Phys. Lett. A, 150 (1990), 262.
doi: 10.1016/0375-9601(90)90092-3. |
[193] |
E. Zaremba, T. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperature,, J. Low Temp. Phys., 116 (1999).
doi: 10.1023/A:1021846002995. |
[194] |
R. Zeng and Y. Zhang, Efficiently computing vortex lattices in fast rotating Bose-Einstein condensates,, Comput. Phys. Commun., 180 (2009), 854.
doi: 10.1016/j.cpc.2008.12.003. |
[195] |
P. Zhang, "Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations,", Courant Lect. Notes Math., 17 (2008).
|
[196] |
Yanzhi Zhang, "Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensation,", PhD Thesis, (2006). Google Scholar |
[197] |
Y. Zhang and W. Bao, Dynamics of the center of mass in rotating Bose-Einstein condensates,, Appl. Numer. Math., 57 (2007), 697.
doi: 10.1016/j.apnum.2006.07.011. |
[198] |
Y. Zhang, W. Bao and H. Li, Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation,, Phys. D, 234 (2007), 49.
doi: 10.1016/j.physd.2007.06.026. |
show all references
References:
[1] |
J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates,, Science, 292 (2001), 476.
doi: 10.1126/science.1060182. |
[2] |
S. K. Adhikari and P. Muruganandam, Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation,, J. Phys. B: At. Mol. Opt. Phys., 35 (2002), 2831.
doi: 10.1088/0953-4075/35/12/317. |
[3] |
S. K. Adhikari and P. Muruganandam, Mean-field model for the interference of matter-waves from a three-dimensional optical trap,, Phys. Lett. A, 310 (2003), 229.
doi: 10.1016/S0375-9601(03)00335-9. |
[4] |
A. Aftalion, "Vortices in Bose-Einstein Condensates,", Progress in Nonlinear Differential Equations and their Applications, 67 (2006).
|
[5] |
A. Aftalion and Q. Du, Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime,, Phys. Rev. A, 64 (2001).
doi: 10.1103/PhysRevA.64.063603. |
[6] |
A. Aftalion, Q. Du and Y. Pomeau, Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose Einstein condensate,, Phys. Rev. Lett., 91 (2003).
doi: 10.1103/PhysRevLett.91.090407. |
[7] |
A. Aftalion, R. Jerrard and J. Royo-Letelier, Non-existence of vortices in the small density region of a condensate,, J. Funct. Anal., 260 (2011), 2387.
doi: 10.1016/j.jfa.2010.12.003. |
[8] |
K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm and F. Ferlaino, Bose-Einstein condensation of Erbium,, Phys. Rev. Lett., 108 (2012).
doi: 10.1103/PhysRevLett.108.210401. |
[9] |
G. Akrivis, Finite difference discretization of the cubic Schrödinger equation,, IMA J. Numer. Anal., 13 (1993), 115.
doi: 10.1093/imanum/13.1.115. |
[10] |
G. Akrivis, V. Dougalis and O. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numer. Math., 59 (1991), 31.
doi: 10.1007/BF01385769. |
[11] |
J. O. Andersen, Theory of the weakly interacting Bose gas,, Rev. Mod. Phys., 76 (2004), 599.
doi: 10.1103/RevModPhys.76.599. |
[12] |
M. H. Anderson, J. R. Ensher, M. R. Matthewa, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,, Science, 269 (1995), 198.
doi: 10.1126/science.269.5221.198. |
[13] |
P. Antonelli, D. Marahrens and C. Sparber, On the Cauchy problem for nonlinear Schrödinger equations with rotation,, Discrete Contin. Dyn. Syst., 32 (2012), 703.
doi: 10.3934/dcds.2012.32.703. |
[14] |
W. Bao, The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics,, in, 9 (2007), 141.
|
[15] |
W. Bao, Ground states and dynamics of multicomponent Bose-Einstein condensates,, Multiscale Model. Simul., 2 (2004), 210.
doi: 10.1137/030600209. |
[16] |
W. Bao, Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions,, Methods Appl. Anal., 11 (2004), 367.
|
[17] |
W. Bao, Analysis and efficient computation for the dynamics of two-component Bose-Einstein condensates: Stationary and time dependent Gross-Pitaevskii equations,, Contemp. Math., 473 (2008), 1.
doi: 10.1090/conm/473/09222. |
[18] |
W. Bao, N. Ben Abdallah and Y. Cai, Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement,, SIAM J. Math. Anal., 44 (2012), 1713.
doi: 10.1137/110850451. |
[19] |
W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction,, East Asia J. Appl. Math., 1 (2010), 49. Google Scholar |
[20] |
W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator,, SIAM J Numer. Anal., 50 (2012), 492.
doi: 10.1137/110830800. |
[21] |
W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation,, Math. Comp., 82 (2013), 99.
|
[22] |
W. Bao and Y. Cai, Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator,, preprint., (). Google Scholar |
[23] |
W. Bao, Y. Cai and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates,, J. Comput. Phys., 229 (2010), 7874.
doi: 10.1016/j.jcp.2010.07.001. |
[24] |
W. Bao and M. H. Chai, A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems,, Commun. Comput. Phys., 4 (2008), 135.
|
[25] |
W. Bao, I. Chern and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates,, J. Comput. Phys., 219 (2006), 836.
doi: 10.1016/j.jcp.2006.04.019. |
[26] |
W. Bao, I. Chern and Y. Zhang, Efficient methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations,, preprint., (). Google Scholar |
[27] |
W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674.
doi: 10.1137/S1064827503422956. |
[28] |
W. Bao, Q. Du and Y. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation,, SIAM J. Appl. Math., 66 (2006), 758.
doi: 10.1137/050629392. |
[29] |
W. Bao, Y. Ge, D. Jaksch, P. A. Markowich and R. M. Weishäupl, Convergence rate of dimension reduction in Bose-Einstein condensates,, Comput. Phys. Comm., 177 (2007), 832.
doi: 10.1016/j.cpc.2007.06.015. |
[30] |
W. Bao and D. Jaksch, An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity,, SIAM J. Numer. Anal., 41 (2003), 1406.
doi: 10.1137/S0036142902413391. |
[31] |
W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation,, J. Comput. Phys., 187 (2003), 318.
doi: 10.1016/S0021-9991(03)00102-5. |
[32] |
W. Bao, D. Jaksch and P. A. Markowich, Three dimensional simulation of jet formation in collapsing condensates,, J. Phys. B: At. Mol. Opt. Phys., 37 (2004), 329.
doi: 10.1088/0953-4075/37/2/003. |
[33] |
W. Bao, S. Jin and P. A. Markowich, On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime,, J. Comput. Phys., 175 (2002), 487.
doi: 10.1006/jcph.2001.6956. |
[34] |
W. Bao, S. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes,, SIAM J. Sci. Comput., 25 (2003), 27.
doi: 10.1137/S1064827501393253. |
[35] |
W. Bao, H.-L. Li and J. Shen, A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates,, SIAM J. Sci. Comput., 31 (2009), 3685.
doi: 10.1137/080739811. |
[36] |
W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow,, SIAM J. Sci. Comput., 30 (2008), 1925.
doi: 10.1137/070698488. |
[37] |
W. Bao, F. Y. Lim and Y. Zhang, Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime,, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 495.
|
[38] |
W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767.
doi: 10.1142/S0218202505000534. |
[39] |
W. Bao, L. Pareschi and P. A. Markowich, Quantum kinetic theory: modeling and numerics for Bose-Einstein condensation,, in, (2004), 287.
|
[40] |
W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2020.
doi: 10.1137/030601211. |
[41] |
W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates,, J. Comput. Phys., 227 (2008), 9778.
doi: 10.1016/j.jcp.2008.07.017. |
[42] |
W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation,, J. Comput. Phys., (). Google Scholar |
[43] |
W. Bao and W. Tang, Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional,, J. Comput. Phys., 187 (2003), 230.
doi: 10.1016/S0021-9991(03)00097-4. |
[44] |
W. Bao and H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates,, J. Comput. Phys., 217 (2006), 612.
doi: 10.1016/j.jcp.2006.01.020. |
[45] |
W. Bao and H. Wang, A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates,, SIAM J. Numer. Anal., 45 (2007), 2177.
doi: 10.1137/070681624. |
[46] |
W. Bao, H. Wang and P. A. Markowich, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates,, Commun. Math. Sci., 3 (2005), 57.
|
[47] |
W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation,, Math. Models Methods Appl. Sci., 15 (2005), 1863.
doi: 10.1142/S021820250500100X. |
[48] |
W. Bao and Y. Zhang, Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates,, Methods Appl. Anal., 17 (2010), 49.
|
[49] |
M. A. Baranov, M. Dalmonte, G. Pupillo and P. Zolle, Condensed matter theory of dipolar quantum gases,, Chem. Rev., 112 (2012), 5012.
doi: 10.1021/cr2003568. |
[50] |
M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate,, Phys. Rev. Lett., 87 (2001).
doi: 10.1103/PhysRevLett.87.010404. |
[51] |
N. Ben Abdallah, Y. Cai, F. Castella and F. M\'ehats, Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential,, Kinet. Relat. Models, 4 (2011), 831.
doi: 10.3934/krm.2011.4.831. |
[52] |
N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost periodicity,, J. Diff. Eqn., 245 (2008), 154.
doi: 10.1016/j.jde.2008.02.002. |
[53] |
N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189.
doi: 10.1137/040614554. |
[54] |
C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation,, SIAM J. Numer. Anal., 40 (2002), 26.
doi: 10.1137/S0036142900381497. |
[55] |
I. Bialynicki-Birula and Z. Bialynicki-Birula, Center-of-mass motion in the many-body theory of Bose-Einstein condensates,, Phys. Rev. A, 65 (2002).
doi: 10.1103/PhysRevA.65.063606. |
[56] |
I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases,, Rev. Mod. Phys., 80 (2008), 885.
doi: 10.1103/RevModPhys.80.885. |
[57] |
N. N. Bogoliubov, On the theory of superfluidity,, J. Phys. USSR, 11 (1947), 23.
|
[58] |
S. N. Bose, Plancks gesetz und lichtquantenhypothese,, Zeitschrift fr Physik, 3 (1924), 178. Google Scholar |
[59] |
C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction,, Phys. Rev. Lett., 75 (1995), 1687.
doi: 10.1103/PhysRevLett.75.1687. |
[60] |
C. C. Bradley, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of Lithium: Observation of limited condensates,, Phys. Rev. Lett., 78 (1997), 985.
doi: 10.1103/PhysRevLett.78.985. |
[61] |
J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz and K. Promislow, Stability of repulsive Bose-Einstein condensates in a periodic potential,, Phys. Rev. E, 63 (2001).
doi: 10.1103/PhysRevE.63.036612. |
[62] |
M. Bruderer, W. Bao and D. Jaksch, Self-trapping of impurities in Bose-Einstein condensates: Strong attractive and repulsive coupling,, EPL, 82 (2008).
doi: 10.1209/0295-5075/82/30004. |
[63] |
L. Cafferelli and F. H. Lin, An optimal partition problem for eigenvalues,, J. Sci. Comput., 31 (2007), 5.
doi: 10.1007/s10915-006-9114-8. |
[64] |
Yongyong Cai, "Mathematical Theory and Numerical Methods for the Gross-Piatevskii Equations and Applications,", Ph.D Thesis, (2011). Google Scholar |
[65] |
Y. Cai, M. Rosenkranz, Z. Lei and W. Bao, Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions,, Phys. Rev. A, 82 (2010).
doi: 10.1103/PhysRevA.82.043623. |
[66] |
M. Caliari and M. Squassina, Location and phase segregation of ground and excited states for 2D Gross-Pitaevskii systems,, Dynamics of PDE, 5 (2008), 117.
|
[67] |
P. Capuzzi and S. Hernandez, Bose-Einstein condensation in harmonic double wells,, Phys. Rev. A, 59 (1999).
doi: 10.1103/PhysRevA.59.1488. |
[68] |
B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates,, Phys. Rev. Lett., 83 (1999), 895.
doi: 10.1103/PhysRevLett.83.895. |
[69] |
R. Carles, "Semi-Classical Analysis for Nonlinear Schrödinger Equations,", World Scentific, (2008). Google Scholar |
[70] |
R. Carles, P. A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves,, J. Statist. Phys., 117 (2004), 343.
doi: 10.1023/B:JOSS.0000044070.34410.17. |
[71] |
R. Carles, P. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases,, Nonlinearity, 21 (2008), 2569.
doi: 10.1088/0951-7715/21/11/006. |
[72] |
L. D. Carr, C. W. Clark and W. P. Reinhardt, Stationary solutions of the one dimensional nonlinear Schrodinger equation I. case of repulsive nonlinearity,, Phys. Rev. A, 62 (2000).
doi: 10.1103/PhysRevA.62.063610. |
[73] |
T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lect. Notes Math., (2003).
|
[74] |
M. M. Cerimele, M. L. Chiofalo, F. Pistella, S. Succi and M. P. Tosi, Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates,, Phys. Rev. E, 62 (2000), 1382.
doi: 10.1103/PhysRevE.62.1382. |
[75] |
M. M. Cerimele, F. Pistella and S. Succi, Particle-inspired scheme for the Gross-Pitaevski equation: An application to Bose-Einstein condensation,, Comput. Phys. Comm., 129 (2000), 82.
doi: 10.1016/S0010-4655(00)00095-3. |
[76] |
Q. Chang, B. Guo and H. Jiang, Finite difference method for generalized Zakharov equations,, Math. Comp., 64 (1995), 537.
doi: 10.1090/S0025-5718-1995-1284664-5. |
[77] |
S. M. Chang, W. W. Lin and S. F. Shieh, Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate,, J. Comput. Phys., 202 (2005), 367.
doi: 10.1016/j.jcp.2004.07.012. |
[78] |
M. L. Chiofalo, S. Succi and M. P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm,, Phys. Rev. E, 62 (2000), 7438.
doi: 10.1103/PhysRevE.62.7438. |
[79] |
D. I. Choi and Q. Niu, Bose-Einstein condensation in an optical lattice,, Phys. Rev. Lett., 82 (1999), 2022.
doi: 10.1103/PhysRevLett.82.2022. |
[80] |
E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments,, Rev. Mod. Phys., 74 (2002), 875.
doi: 10.1103/RevModPhys.74.875. |
[81] |
M. Correggi, P. Florian, N. Rougerie and J. Yngvason, Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices,, Phys. Rev. A, 84 (2011).
doi: 10.1103/PhysRevA.84.053614. |
[82] |
M. Correggi, N. Rougerie and J. Yngvason, The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate,, Comm. Math. Phys., 303 (2011), 451.
doi: 10.1007/s00220-011-1202-4. |
[83] |
M. Correggi and J. Yngvason, Energy and vorticity in fast rotating Bose-Einstein condensates,, J. Phys. A, 41 (2008).
doi: 10.1088/1751-8113/41/44/445002. |
[84] |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.
doi: 10.1103/RevModPhys.71.463. |
[85] |
M. J. Davis and P. B. Blakie, Critical temperature of a trapped Bose gas: Comparison of theory and experiment,, Phys. Rev. Lett., 96 (2006).
doi: 10.1103/PhysRevLett.96.060404. |
[86] |
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969.
doi: 10.1103/PhysRevLett.75.3969. |
[87] |
M. J. Davis, S. A. Morgan and K. Burnett, Simulations of Bose-fields at finite temperature,, Phys. Rev. Lett., 87 (2001).
doi: 10.1103/PhysRevLett.87.160402. |
[88] |
A. Debussche and E. Faou, Modified energy for split-step methods applied to the linear Schrödinger equations,, SIAM J. Numer. Anal., 47 (2009), 3705.
doi: 10.1137/080744578. |
[89] |
C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap,, Phys. Rev. E, 67 (2003).
doi: 10.1103/PhysRevE.67.046706. |
[90] |
R. J. Dodd, Approximate solutions of the nonlinear Schrödinger equation for ground and excited sates for Bose-Einstein condensates,, J. Res. Natl. Inst. Stand. Technol., 101 (1996), 545.
doi: 10.6028/jres.101.054. |
[91] |
Q. Du, Numerical computations of quantized vortices in Bose-Einstein condensate,, in, (2002), 155.
doi: 10.1007/978-1-4615-0113-8_11. |
[92] |
Q. Du and F. H. Lin, Numerical approximations of a norm preserving gradient flow and applications to an optimal partition problem,, Nonlinearity, 22 (2009), 67.
doi: 10.1088/0951-7715/22/1/005. |
[93] |
M. Edwards and K. Burnett, Numerical solution of the nonlinear Schrödinger equation for small samples of neutral atoms,, Phys. Rev. A, 51 (1995). Google Scholar |
[94] |
A. Einstein, Quantentheorie des einatomigen idealen gases,, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 22 (1924), 261. Google Scholar |
[95] |
A. Einstein, Quantentheorie des einatomigen idealen gases, zweite abhandlung,, Sitzungs-berichte der Preussischen Akademie der Wissenschaften, 1 (1925), 3. Google Scholar |
[96] |
L. Erdős, B. Schlein and H. T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate,, Ann. Math., 172 (2010), 291.
doi: 10.4007/annals.2010.172.291. |
[97] |
A. L. Fetter, Rotating trapped Bose-Einstein condensates,, Rev. Mod. Phys., 81 (2009), 647. Google Scholar |
[98] |
A. L. Fetter and A. A. Svidzinsky, Vortices in trapped dilute Bose-Einstein condensate,, J. Phys.: Condens. Matter, 13 (2001), 135.
doi: 10.1088/0953-8984/13/12/201. |
[99] |
D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner and T. J. Greytak, Bose-Einstein condensation of atomic hydrogen,, Phys. Rev. Lett, 81 (1998).
doi: 10.1103/PhysRevLett.81.3811. |
[100] |
J. J. Garcia-Ripoll and V. M. Perez-Garcia, Optimizing Schrödinger functional using Sobolev gradients: Applications to quantum mechanics and nonlinear optics,, SIAM J. Sci. Comput., 23 (2001), 1315.
doi: 10.1137/S1064827500377721. |
[101] |
J. J. Garcia-Ripoll, V. M. Perez-Garcia and V. Vekslerchik, Construction of exact solutions by spatial translations in inhomogeneous nonlinear Schrödinger equations,, Phys. Rev. E, 64 (2001).
doi: 10.1103/PhysRevE.64.056602. |
[102] |
S. A. Gardiner, D. Jaksch, R. Dum, J. I. Cirac and P. Zoller, Nonlinear matter wave dynamics with a chaotic potential,, Phys. Rev. A, 62 (2000).
doi: 10.1103/PhysRevA.62.023612. |
[103] |
I. Gasser and P. A. Markowich, Quantum hydrodynamics, Winger transforms and the classical limit,, Assymptot. Anal., 14 (1997), 97.
|
[104] |
P. Gerard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 321.
doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C. |
[105] |
S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of ultracold atomic Fermi gases,, Rev. Mod. Phys., 80 (2008), 1215.
doi: 10.1103/RevModPhys.80.1215. |
[106] |
R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension,, Math. Comp., 58 (1992), 83.
doi: 10.1090/S0025-5718-1992-1106968-6. |
[107] |
A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, Bose-Einstein condensation of Chromium,, Phys. Rev. Lett., 94 (2005).
doi: 10.1103/PhysRevLett.94.160401. |
[108] |
A. Griffin, T. Nikuni and E. Zaremba, "Bose-Condensed Gases at Finite Temperatures,", Cambridge University Press, (2009).
doi: 10.1017/CBO9780511575150. |
[109] |
E. P. Gross, Structure of a quantized vortex in boson systems,, Nuovo. Cimento., 20 (1961), 454.
doi: 10.1007/BF02731494. |
[110] |
Paul Lee Halkyard, "Dynamics in Cold Atomic Gases: Resonant Behaviour of the Quantum Delta-Kicked Accelerator and Bose-Einstein Condensates in Ring Traps,", Ph.D Thesis, (2010). Google Scholar |
[111] |
C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term,, Math. Methods Appl. Sci., 31 (2008), 655.
doi: 10.1002/mma.931. |
[112] |
C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions,, J. Math. Phys., 48 (2007).
|
[113] |
D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 1539. Google Scholar |
[114] |
R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,, SIAM Rev. Chronicle, 15 (1973). Google Scholar |
[115] |
N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension,, Differ. Integral Equ., 2 (1994), 453.
|
[116] |
C. E. Hecht, The possible superfluid behaviour of hydrogen atom gases and liquids,, Physica, 25 (1959), 1159. Google Scholar |
[117] |
T. L. Ho, Spinor Bose condensates in optical traps,, Phys. Rev. Lett., 81 (1998), 742. Google Scholar |
[118] |
M. Holthaus, Towards coherent control of a Bose-Einstein condensate in a double well,, Phys. Rev. A, 64 (2001). Google Scholar |
[119] |
R. Ignat and V. Millot, The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate,, J. Funct. Anal., 233 (2006), 260.
doi: 10.1016/j.jfa.2005.06.020. |
[120] |
R. Ignat and V. Millot, Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate,, Rev. Math. Phys., 18 (2006), 119.
doi: 10.1142/S0129055X06002607. |
[121] |
D. Jaksch, S. A. Gardiner, K. Schulze, J. I. Cirac and P. Zoller, Uniting Bose-Einstein condensates in optical resonators,, Phys. Rev. Lett., 86 (2001), 4733.
doi: 10.1103/PhysRevLett.86.4733. |
[122] |
S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing nonlinear Schrödinger hierarchy,, Comm. Pure Appl. Math., 52 (1999), 613.
doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L. |
[123] |
G. Karrali and C. Sourdis, The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit,, preprint, (). Google Scholar |
[124] |
Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein condensates,, Phys. Rep., (). Google Scholar |
[125] |
C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations,, Invent. Math., 158 (2004), 343.
doi: 10.1007/s00222-004-0373-4. |
[126] |
W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser,, Rev. Mod. Phys., 74 (2002), 1131.
doi: 10.1103/RevModPhys.74.1131. |
[127] |
A. Klein, D. Jaksch, Y. Zhang and W. Bao, Dynamics of vortices in weakly interacting Bose-Einstein condensates,, Phys. Rev. A, 76 (2007). Google Scholar |
[128] |
I. Kyza, C. Makridakis and M. Plexousakis, Error control for time-splitting spectral approximations of the semiclassical Schrödinger equation,, IMA J. Numer. Anal., 31 (2011), 416.
|
[129] |
C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5257. Google Scholar |
[130] |
A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts,, Rev. Mod. Phys., 73 (2001), 307. Google Scholar |
[131] |
E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Mathematics, (2001).
|
[132] |
E. H. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases,, Comm. Math. Phys., 264 (2006), 505.
doi: 10.1007/s00220-006-1524-9. |
[133] |
E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, "The Mathematics of the Bose Gas and its Condensation,", Oberwolfach Seminars 34, (2005).
|
[134] |
E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional,, Phys. Rev. A, 61 (2000). Google Scholar |
[135] |
E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas,, Comm. Math. Phys., 252 (2004), 485.
|
[136] |
Fong Yin Lim, "Analytical and Numerical Studies of Bose-Einstein Condensates,", Ph.D Thesis, (2008). Google Scholar |
[137] |
H. L. Liu and C. Sparber, Rigorious derivation of the hydrodynamical equations for rotating superfluids,, Math. Models Methods Appl. Sci., 18 (2008), 689.
|
[138] |
W. M. Liu, B. Wu and Q. Niu, Nonlinear effects in interference of Bose-Einstein condensates,, Phys. Rev. Lett., 84 (2000), 2294. Google Scholar |
[139] |
F. London, The $\lambda$-phenomenon of liquid helium and the Bose-Einstein degeneracy,, Nature, 141 (1938), 643. Google Scholar |
[140] |
M. Lu, N. Q. Burdick, S.-H. Youn and B. L. Lev, A strongly dipolar Bose-Einstein condensate of Dysprosium,, Phy. Rev. Lett., 107 (2011). Google Scholar |
[141] |
C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations,, Math. Comp., 77 (2008), 2141.
doi: 10.1090/S0025-5718-08-02101-7. |
[142] |
K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate,, Phys. Rev. Lett., 84 (2000), 806.
doi: 10.1103/PhysRevLett.84.806. |
[143] |
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate,, Phys. Rev. Lett., 83 (1999), 2498.
doi: 10.1103/PhysRevLett.83.2498. |
[144] |
C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling,, Phys. Rev. Lett., 78 (1997), 586.
doi: 10.1103/PhysRevLett.78.586. |
[145] |
G. J. Milburn, J. Corney, E. M. Wright and D. F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential,, Phys. Rev. A, 55 (1997).
doi: 10.1103/PhysRevA.55.4318. |
[146] |
B. Min, T. Li, M. Rosenkranz and W. Bao, Subdiffusive spreading of a Bose-Einstein condensate in random potentials,, Phys. Rev. A, 86 (2012). Google Scholar |
[147] |
O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices,, Rev. Mod. Phys., 78 (2006), 179.
doi: 10.1103/RevModPhys.78.179. |
[148] |
C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential,, BIT, 49 (2009), 199.
doi: 10.1007/s10543-009-0215-2. |
[149] |
R. Ozeri, N. Katz, J. Steinhauer and N. Davidson, Colloquium: Bulk Bogoliubov excitations in a Bose-Einstein condensate,, Rev. Mod. Phys., 77 (2005), 187.
doi: 10.1103/RevModPhys.77.187. |
[150] |
N. G. Parker, C. Ticknor, A. M. Martin and D. H. J. O'Dell1, Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate,, Phys. Rev. A, 79 (2009).
doi: 10.1103/PhysRevA.79.013617. |
[151] |
C. J. Pethick and H. Smith, "Bose-Einstein Condensation in Dilute Gases,", Cambridge University Press, (2002). Google Scholar |
[152] |
L. P. Pitaevskii, Vortex lines in an imperfect Bose gas,, Soviet Phys. JETP, 13 (1961), 451. Google Scholar |
[153] |
L. P. Pitaevskii and S. Stringari, "Bose-Einstein Condensation,", Clarendon Press, (2003).
|
[154] |
A. Posazhennikova, Colloquium: Weakly interacting, dilute Bose gases in 2D,, Rev. Mod. Phys., 78 (2006), 1111.
doi: 10.1103/RevModPhys.78.1111. |
[155] |
J. L. Roberts, N. R. Claussen, S. L. Cornish and C. E. Wieman, Magnetic field dependence of ultracold inelastic collisions near a Feshbach resonance,, Phys. Rev. Lett., 85 (2000), 728.
doi: 10.1103/PhysRevLett.85.728. |
[156] |
M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable,, J. Comput. Phys., 104 (1993), 277.
doi: 10.1006/jcph.1993.1029. |
[157] |
S. Ronen, D. C. E. Bortolotti and J. L. Bohn, Bogoliubov modes of a dipolar condensate in a cylindrical trap,, Phys. Rev. A, 74 (2006).
doi: 10.1103/PhysRevA.74.013623. |
[158] |
M. Rosenkranz, D. Jaksch, F. Y. Lim and W. Bao, Self-trapping of Bose-Einstein condensate expanding into shallow optical lattices,, Phys. Rev. A, 77 (2008).
doi: 10.1103/PhysRevA.77.063607. |
[159] |
N. Rougerie, Vortex rings in fast rotating Bose-Einstein condensates,, Arch. Ration. Mech. Anal., 203 (2012), 69.
doi: 10.1007/s00205-011-0447-6. |
[160] |
P. A. Ruprecht, M. J. Holland, K. Burnett and M. Edwards, Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms,, Phys. Rev. A, 51 (1995), 4704.
doi: 10.1103/PhysRevA.51.4704. |
[161] |
C. Ryu, M. F. Andersen, P. Cladé, Vasant Natarajan, K. Helmerson and W. D. Phillips, Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap,, Phys. Rev. Lett., 99 (2007).
doi: 10.1103/PhysRevLett.99.260401. |
[162] |
H. Saito and M. Ueda, Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction,, Phys. Rev. Lett., 86 (2001), 1406.
doi: 10.1103/PhysRevLett.86.1406. |
[163] |
J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", $2^{nd}$ edition, 59 (2007).
|
[164] |
L. Santos, G. Shlyapnikov, P. Zoller and M. Lewenstein, Bose-Einstein condesation in trapped dipolar gases,, Phys. Rev. Lett., 85 (2000), 1791.
doi: 10.1103/PhysRevLett.85.1791. |
[165] |
R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas,, Comm. Math. Phys., 229 (2002), 491.
doi: 10.1007/s00220-002-0695-2. |
[166] |
J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions,, SIAM J. Numer. Anal., 38 (2000), 1113.
doi: 10.1137/S0036142999362936. |
[167] |
J. Shen and T. Tang, "Spectral and High-Order Methods with Applications,", Science Press, (2006).
|
[168] |
J. Shen, T. Tang and L.-L. Wang, "Spectral Methods. Algorithms, Analysis and Applications,", Springer, (2011).
|
[169] |
J. Shen and Z.-Q. Wang, Error analysis of the Strang time-splitting Laguerre-Hermite/Hermite collocation methods for the Gross-Pitaevskii equation,, J. Found. Comput. Math., (). Google Scholar |
[170] |
I. F. Silvera and J. T. M. Walraven, Stabilization of atomic Hydrogen at low temperature,, Phys. Rev. Lett., 44 (1980), 164.
doi: 10.1103/PhysRevLett.44.164. |
[171] |
T. P. Simula, A. A. Penckwitt and R. J. Ballagh, Giant vortex lattice deformation in rapidly rotating Bose-Einstein condensates,, Phys. Rev. Lett., 92 (2004).
doi: 10.1103/PhysRevLett.92.060401. |
[172] |
C. Sparber, Effective mass theorems for nonlinear Schrödinger equations,, SIAM J. Appl. Math., 66 (2006), 820.
doi: 10.1137/050623759. |
[173] |
D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard and W. Ketterle, Excitation of phonons in a Bose-Einstein condensate by light scattering,, Phys. Rev. Lett., 83 (1999), 2876.
doi: 10.1103/PhysRevLett.83.2876. |
[174] |
G. Strang, On the construction and comparison of difference schemes,, SIAM J. Numer. Anal., 5 (1968), 506.
doi: 10.1137/0705041. |
[175] |
R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations,, Duke Math. J., 44 (1977), 705.
doi: 10.1215/S0012-7094-77-04430-1. |
[176] |
C. Sulem and P. L. Sulem, "The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,", Springer-Verlag, (1999).
|
[177] |
G. Szegö, "Orthogonal Polynomials,", $4^{th}$ edition, 23 (1975).
|
[178] |
T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations, II. Numerical, nonlinear Schrödinger equation,, J. Comput. Phys., 55 (1984), 203.
doi: 10.1016/0021-9991(84)90003-2. |
[179] |
M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schr\"odinger equations,, SIAM J. Numer. Anal., 46 (2008), 2022.
doi: 10.1137/060674636. |
[180] |
V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Springer-Verlag, (1997).
|
[181] |
I. Tikhonenkov, B. A. Malomed and A. Vardi, Anisotropic solitons in dipolar Bose-Einstein condensates,, Phys. Rev. Lett., 100 (2008).
doi: 10.1103/PhysRevLett.100.090406. |
[182] |
S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel and Y. Yamamoto, Observation of Bogoliubov excitations in exciton-polariton condensates,, Nature Phys., 4 (2008), 700.
doi: 10.1038/nphys1034. |
[183] |
Hanquan Wang, "Quantized Vortices States and Dyanmics in Bose-Einstein Condensates,", PhD Thesis, (2006). Google Scholar |
[184] |
H. Wang, A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates,, J. Comput. Appl. Math., 205 (2007), 88.
doi: 10.1016/j.cam.2006.04.042. |
[185] |
H. Wang, An efficient numerical method for computing dynamics of spin F = 2 Bose-Einstein condensates,, J. Comput. Phys., 230 (2011), 6155.
doi: 10.1016/j.jcp.2011.04.021. |
[186] |
H. Wang and W. Xu, An efficient numerical method for simulating the dynamics of coupling Bose-Einstein condensates in optical resonators,, Comput. Phys. Comm., 182 (2011), 706.
doi: 10.1016/j.cpc.2010.12.010. |
[187] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.
doi: 10.1007/BF01208265. |
[188] |
J. Williams, R. Walser, J. Cooper, E. Cornell and M. Holland, Nonlinear Josephson-type oscillations of a driven two-component Bose-Einstein condensate,, Phys. Rev. A, 59 (1999).
doi: 10.1103/PhysRevA.59.R31. |
[189] |
B. Xiong, J. Gong, H. Pu, W. Bao and B. Li, Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential,, Phys. Rev. A, 79 (2009).
doi: 10.1103/PhysRevA.79.013626. |
[190] |
S. Yi and L. You, Trapped atomic condensates with anisotropic interactions,, Phys. Rev. A, 61 (2000).
doi: 10.1103/PhysRevA.61.041604. |
[191] |
S. Yi and L. You, Expansion of a dipolar condensate,, Phys. Rev. A, 67 (2003).
doi: 10.1103/PhysRevA.67.045601. |
[192] |
H. Yoshida, Construction of higher order symplectic integrators,, Phys. Lett. A, 150 (1990), 262.
doi: 10.1016/0375-9601(90)90092-3. |
[193] |
E. Zaremba, T. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperature,, J. Low Temp. Phys., 116 (1999).
doi: 10.1023/A:1021846002995. |
[194] |
R. Zeng and Y. Zhang, Efficiently computing vortex lattices in fast rotating Bose-Einstein condensates,, Comput. Phys. Commun., 180 (2009), 854.
doi: 10.1016/j.cpc.2008.12.003. |
[195] |
P. Zhang, "Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations,", Courant Lect. Notes Math., 17 (2008).
|
[196] |
Yanzhi Zhang, "Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensation,", PhD Thesis, (2006). Google Scholar |
[197] |
Y. Zhang and W. Bao, Dynamics of the center of mass in rotating Bose-Einstein condensates,, Appl. Numer. Math., 57 (2007), 697.
doi: 10.1016/j.apnum.2006.07.011. |
[198] |
Y. Zhang, W. Bao and H. Li, Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation,, Phys. D, 234 (2007), 49.
doi: 10.1016/j.physd.2007.06.026. |
[1] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[2] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[3] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[4] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[5] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[6] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[7] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[8] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[9] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[10] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[11] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[12] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[13] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[14] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[15] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[16] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
[17] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[18] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
[19] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[20] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]