December  2013, 6(4): 1011-1041. doi: 10.3934/krm.2013.6.1011

Local existence with mild regularity for the Boltzmann equation

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240

2. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501

3. 

17-26 Iwasaki, Hodogaya, Yokohama 240-0015

4. 

Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray

5. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Received  August 2013 Revised  September 2013 Published  November 2013

Without Grad's angular cutoff assumption, the local existence of classical solutions to the Boltzmann equation is studied. There are two new improvements: the index of Sobolev spaces for the solution is related to the parameter of the angular singularity; moreover, we do not assume that the initial data is close to a global equilibrium. Using the energy method, one important step in the analysis is the study of fractional derivatives of the collision operator and related commutators.
Citation: Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011
References:
[1]

R. Alexandre, Some solutions of the Boltzmann equation without angular cutof,, J. Stat. Physics, 104 (2001), 327. doi: 10.1023/A:1010317913642. Google Scholar

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083. Google Scholar

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,, Arch. Rational Mech. Anal., 198 (2010), 39. doi: 10.1007/s00205-010-0290-1. Google Scholar

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff,, Comm. Math. Phys., 304 (2011), 513. doi: 10.1007/s00220-011-1242-9. Google Scholar

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I. Global existence for soft potential,, J. Funct. Anal., 262 (2012), 915. doi: 10.1016/j.jfa.2011.10.007. Google Scholar

[6]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space : II. Global existence for hard potential,, Anal. Appl.(Singap.), 9 (2011), 113. doi: 10.1142/S0219530511001777. Google Scholar

[7]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0. Google Scholar

[8]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Bounded solutions of the Boltzmann equation in the whole space,, Kinet. Relat. Models, 4 (2011), 17. doi: 10.3934/krm.2011.4.17. Google Scholar

[9]

R. Alexandre and C. Villani, On the Boltzmann equation for long-range interaction,, Communications on Pure and Applied Mathematics, 55 (2002), 30. doi: 10.1002/cpa.10012. Google Scholar

[10]

C. Cercignani, The Boltzmann Equation and Its Applications,, Applied mathematical sciences 67, 67 (1988). doi: 10.1007/978-1-4612-1039-9. Google Scholar

[11]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases., Applied mathematical sciences 106. Springer-Verlag, 106 (1994). Google Scholar

[12]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability,, Ann. Math., 130 (1989), 321. doi: 10.2307/1971423. Google Scholar

[13]

H. Grad, Asymptotic theory of the boltzmann equation II,, In Rarefied Gas Dynamics, 1 (1963), 26. Google Scholar

[14]

P.-T. Gressman and R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off,, J. Amer. Math. Soc., 24 (2011), 771. doi: 10.1090/S0894-0347-2011-00697-8. Google Scholar

[15]

Y. Guo, The Landau equation in a periodic box,, Comm. Math. Phys., 231 (2002), 391. doi: 10.1007/s00220-002-0729-9. Google Scholar

[16]

Y. Guo, Bounded solutions for the Boltzmann equationn,, Quaterly of Applied Mathematics, 68 (2010), 143. Google Scholar

[17]

P. L. Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire,(French) [Regularity and compactness for Boltzmann collision kernels without angular cutoff],, C. R. Acad. Sci. Paris Series I Math, 326 (1998), 37. doi: 10.1016/S0764-4442(97)82709-7. Google Scholar

[18]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation,, Phys. D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011. Google Scholar

[19]

Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 187. doi: 10.3934/dcds.2009.24.187. Google Scholar

[20]

Y. P. Pao, Boltzmann collision operator with inverse power intermolecular potential, I, II,, Commun. Pure Appl. Math., 27 (1974), 559. doi: 10.1002/cpa.3160270402. Google Scholar

[21]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179. doi: 10.3792/pja/1195519027. Google Scholar

[22]

S. Ukai, Les solutions globales de l'equation de Boltzmann dans l'espace tout entier et dans le demi-espace,, C. R. Acad. Sci. Paris Ser. A-B, 282 (1976), 317. Google Scholar

[23]

S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff,, Japan J. Appl. Math., 1 (1984), 141. doi: 10.1007/BF03167864. Google Scholar

[24]

S. Ukai, Solutions of the Boltzmann equation,, Patterns and waves, 18 (1986), 37. doi: 10.1016/S0168-2024(08)70128-0. Google Scholar

[25]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions,, Analysis and Applications, 4 (2006), 263. doi: 10.1142/S0219530506000784. Google Scholar

[26]

C. Villani, A review of mathematical topics in collisional kinetic theory,, Handbook of mathematical fluid dynamics, I (2002), 71. doi: 10.1016/S1874-5792(02)80004-0. Google Scholar

show all references

References:
[1]

R. Alexandre, Some solutions of the Boltzmann equation without angular cutof,, J. Stat. Physics, 104 (2001), 327. doi: 10.1023/A:1010317913642. Google Scholar

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083. Google Scholar

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,, Arch. Rational Mech. Anal., 198 (2010), 39. doi: 10.1007/s00205-010-0290-1. Google Scholar

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff,, Comm. Math. Phys., 304 (2011), 513. doi: 10.1007/s00220-011-1242-9. Google Scholar

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I. Global existence for soft potential,, J. Funct. Anal., 262 (2012), 915. doi: 10.1016/j.jfa.2011.10.007. Google Scholar

[6]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space : II. Global existence for hard potential,, Anal. Appl.(Singap.), 9 (2011), 113. doi: 10.1142/S0219530511001777. Google Scholar

[7]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0. Google Scholar

[8]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Bounded solutions of the Boltzmann equation in the whole space,, Kinet. Relat. Models, 4 (2011), 17. doi: 10.3934/krm.2011.4.17. Google Scholar

[9]

R. Alexandre and C. Villani, On the Boltzmann equation for long-range interaction,, Communications on Pure and Applied Mathematics, 55 (2002), 30. doi: 10.1002/cpa.10012. Google Scholar

[10]

C. Cercignani, The Boltzmann Equation and Its Applications,, Applied mathematical sciences 67, 67 (1988). doi: 10.1007/978-1-4612-1039-9. Google Scholar

[11]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases., Applied mathematical sciences 106. Springer-Verlag, 106 (1994). Google Scholar

[12]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability,, Ann. Math., 130 (1989), 321. doi: 10.2307/1971423. Google Scholar

[13]

H. Grad, Asymptotic theory of the boltzmann equation II,, In Rarefied Gas Dynamics, 1 (1963), 26. Google Scholar

[14]

P.-T. Gressman and R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off,, J. Amer. Math. Soc., 24 (2011), 771. doi: 10.1090/S0894-0347-2011-00697-8. Google Scholar

[15]

Y. Guo, The Landau equation in a periodic box,, Comm. Math. Phys., 231 (2002), 391. doi: 10.1007/s00220-002-0729-9. Google Scholar

[16]

Y. Guo, Bounded solutions for the Boltzmann equationn,, Quaterly of Applied Mathematics, 68 (2010), 143. Google Scholar

[17]

P. L. Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire,(French) [Regularity and compactness for Boltzmann collision kernels without angular cutoff],, C. R. Acad. Sci. Paris Series I Math, 326 (1998), 37. doi: 10.1016/S0764-4442(97)82709-7. Google Scholar

[18]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation,, Phys. D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011. Google Scholar

[19]

Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 187. doi: 10.3934/dcds.2009.24.187. Google Scholar

[20]

Y. P. Pao, Boltzmann collision operator with inverse power intermolecular potential, I, II,, Commun. Pure Appl. Math., 27 (1974), 559. doi: 10.1002/cpa.3160270402. Google Scholar

[21]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179. doi: 10.3792/pja/1195519027. Google Scholar

[22]

S. Ukai, Les solutions globales de l'equation de Boltzmann dans l'espace tout entier et dans le demi-espace,, C. R. Acad. Sci. Paris Ser. A-B, 282 (1976), 317. Google Scholar

[23]

S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff,, Japan J. Appl. Math., 1 (1984), 141. doi: 10.1007/BF03167864. Google Scholar

[24]

S. Ukai, Solutions of the Boltzmann equation,, Patterns and waves, 18 (1986), 37. doi: 10.1016/S0168-2024(08)70128-0. Google Scholar

[25]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions,, Analysis and Applications, 4 (2006), 263. doi: 10.1142/S0219530506000784. Google Scholar

[26]

C. Villani, A review of mathematical topics in collisional kinetic theory,, Handbook of mathematical fluid dynamics, I (2002), 71. doi: 10.1016/S1874-5792(02)80004-0. Google Scholar

[1]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[2]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[3]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[4]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[5]

Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic & Related Models, 2014, 7 (3) : 433-461. doi: 10.3934/krm.2014.7.433

[6]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[7]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[8]

Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411

[9]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[10]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[11]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[12]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[13]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 695-708. doi: 10.3934/dcdss.2020038

[14]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[15]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[16]

Renjun Duan, Shota Sakamoto. Solution to the Boltzmann equation in velocity-weighted Chemin-Lerner type spaces. Kinetic & Related Models, 2018, 11 (6) : 1301-1331. doi: 10.3934/krm.2018051

[17]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[18]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[19]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[20]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (4)

[Back to Top]