December  2013, 6(4): 1043-1055. doi: 10.3934/krm.2013.6.1043

A kinetic description of mutation processes in bacteria

1. 

University of Pavia, Department of Mathematics, Via Ferrata 1, 27100 Pavia

Received  September 2013 Revised  September 2013 Published  November 2013

The Luria--Delbrück mutation model has been mathematically formulated in a number of ways. Last, a mean field picture derived from a kinetic formulation has been derived by Kashdan and Pareschi in [18]. There, the Luria--Delbrück distribution appears as the solution of a Fokker-Planck like equation obtained as the quasi-invariant asymptotics of a linear Boltzmann equation for the number density of the number of mutated cells. This paper addresses the kinetic description for the Lea--Coulson formulation [21], as well as for the Kendall formulation [19], focusing on important modeling issues closely linked with the distribution of the number of mutants. The paper additionally emphasizes basic principles which not only help to unify existing results but also allow for a useful extensions.
Citation: Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic & Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043
References:
[1]

W. P. Angerer, An explicit representation of the Luria-Delbrück distribution,, J. Math. Biol., 42 (2001), 145. doi: 10.1007/s002850000053. Google Scholar

[2]

P. Armitage, The statistical theory of bacterial populations subject to mutation,, J. Royal Statist. Soc. B, 14 (1952), 1. Google Scholar

[3]

M. S. Bartlett, An Introduction to Stochastic Processes With Special Reference to Methods and Applications,, Second edition Cambridge University Press, (1966). Google Scholar

[4]

A. V. Bobylev, The theory of the spatially Uniform Boltzmann equation for Maxwell molecules,, Sov. Sci. Review C, 7 (1988), 111. Google Scholar

[5]

C. Cercignani, The Boltzmann Equation and its Applications,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4612-1039-9. Google Scholar

[6]

A. Chakraborti, Distributions of money in models of market economy,, Int. J. Modern Phys. C, 13 (2002), 1315. Google Scholar

[7]

A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity,, Eur. Phys. J. B, 17 (2000), 167. Google Scholar

[8]

A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution,, Phys. Rev. E, 72 (2005). Google Scholar

[9]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253. doi: 10.1007/s10955-005-5456-0. Google Scholar

[10]

K. S. Crump and D. G. Hoel, Mathematical models for estimating mutation rates in cell populations,, Biometrika, 61 (1974), 237. Google Scholar

[11]

A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money,, Eur. Phys. Jour. B, 17 (2000), 723. Google Scholar

[12]

B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches,, Phys. Rev. E, 78 (2008). doi: 10.1103/PhysRevE.78.056103. Google Scholar

[13]

B. Düring, D. Matthes and G. Toscani, A Boltzmann type approach to the formation of wealth distribution curves,, Riv. Mat. Univ. Parma, 1 (2009), 199. Google Scholar

[14]

E. Gabetta, G. Toscani and B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation,, J. Statist. Phys., 81 (1995), 901. doi: 10.1007/BF02179298. Google Scholar

[15]

B. Hayes, Follow the money,, American Scientist, 90 (2002), 400. Google Scholar

[16]

J. R. Iglesias, S. Gonçalves, S. Pianegonda, J. L. Vega and G. Abramson, Wealth redistribution in our small world, Nonequilibrium statistical mechanics and nonlinear physics (MEDYFINOL '02) (Colonia del Sacramento),, Physica A, 327 (2003), 12. doi: 10.1016/S0378-4371(03)00430-8. Google Scholar

[17]

M. E. Jones, S. M. Thomas and A. Rogers, Luria-Delbrück fluctuation experiments: Design and analysis,, Genetics, 136 (1994), 1209. Google Scholar

[18]

E. Kashdan and L. Pareschi, Mean field dynamics and the continuous Luria-Delbrück distribution,, Mathematical Biosciences, 240 (2012), 223. doi: 10.1016/j.mbs.2012.08.001. Google Scholar

[19]

D. G. Kendall, Stochastic processes and population growth,, Journal of the Royal Statistical Society, 11 (1949), 230. Google Scholar

[20]

A. L. Koch, Mutation and growth rates from Luria-Delbrück fluctuation tests,, Mutat. Res., 95 (1982), 129. Google Scholar

[21]

D. E. Lea and C. A. Coulson, The distribution of the numbers of mutants in bacterial populations,, J. Genetics, 49 (1949), 264. Google Scholar

[22]

S. E. Luria and M. Delbrück, Mutations of bacteria from virus sensitivity to virus resistance,, Genetics, 28 (1943), 491. Google Scholar

[23]

W. T. Ma, G. v. H. Sandri and S. Sarkar, Analysis of the Luria and Delbrück distribution using discrete convolution powers,, J. Appl. Prob., 29 (1992), 255. Google Scholar

[24]

B. Mandelbrot, A population birth-and-mutation process, I: Explicit distributions for the number of mutants in an old culture of bacteria,, J. Appl. Prob., 11 (1974), 437. Google Scholar

[25]

D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies,, J. Stat. Phys., 130 (2008), 1087. doi: 10.1007/s10955-007-9462-2. Google Scholar

[26]

A. G. Pakes, Remarks on the Luria-Delbrück distribution,, J. Appl. Prob., 30 (1993), 991. Google Scholar

[27]

L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic equations & Monte Carlo Methods,, Oxford University Press, (2013). Google Scholar

[28]

F. Slanina, Inelastically scattering particles and wealth distribution in an open economy,, Phys. Rev. E, 69 (2004). Google Scholar

[29]

F. M. Stewart, D. M. Gordon and B. R. Levin, Fluctuation analysis: The probability distribution of the number of mutants under different conditions,, Genetics, 124 (1990), 175. Google Scholar

[30]

G. Toscani, Kinetic models of opinion formation,, Commun. Math. Sci., 4 (2006), 481. Google Scholar

[31]

Q. Zheng, Progress of a half century in the study of the Luria-Delbrück distribution,, Math. Biosciences, 162 (1999), 1. doi: 10.1016/S0025-5564(99)00045-0. Google Scholar

show all references

References:
[1]

W. P. Angerer, An explicit representation of the Luria-Delbrück distribution,, J. Math. Biol., 42 (2001), 145. doi: 10.1007/s002850000053. Google Scholar

[2]

P. Armitage, The statistical theory of bacterial populations subject to mutation,, J. Royal Statist. Soc. B, 14 (1952), 1. Google Scholar

[3]

M. S. Bartlett, An Introduction to Stochastic Processes With Special Reference to Methods and Applications,, Second edition Cambridge University Press, (1966). Google Scholar

[4]

A. V. Bobylev, The theory of the spatially Uniform Boltzmann equation for Maxwell molecules,, Sov. Sci. Review C, 7 (1988), 111. Google Scholar

[5]

C. Cercignani, The Boltzmann Equation and its Applications,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4612-1039-9. Google Scholar

[6]

A. Chakraborti, Distributions of money in models of market economy,, Int. J. Modern Phys. C, 13 (2002), 1315. Google Scholar

[7]

A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity,, Eur. Phys. J. B, 17 (2000), 167. Google Scholar

[8]

A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution,, Phys. Rev. E, 72 (2005). Google Scholar

[9]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253. doi: 10.1007/s10955-005-5456-0. Google Scholar

[10]

K. S. Crump and D. G. Hoel, Mathematical models for estimating mutation rates in cell populations,, Biometrika, 61 (1974), 237. Google Scholar

[11]

A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money,, Eur. Phys. Jour. B, 17 (2000), 723. Google Scholar

[12]

B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches,, Phys. Rev. E, 78 (2008). doi: 10.1103/PhysRevE.78.056103. Google Scholar

[13]

B. Düring, D. Matthes and G. Toscani, A Boltzmann type approach to the formation of wealth distribution curves,, Riv. Mat. Univ. Parma, 1 (2009), 199. Google Scholar

[14]

E. Gabetta, G. Toscani and B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation,, J. Statist. Phys., 81 (1995), 901. doi: 10.1007/BF02179298. Google Scholar

[15]

B. Hayes, Follow the money,, American Scientist, 90 (2002), 400. Google Scholar

[16]

J. R. Iglesias, S. Gonçalves, S. Pianegonda, J. L. Vega and G. Abramson, Wealth redistribution in our small world, Nonequilibrium statistical mechanics and nonlinear physics (MEDYFINOL '02) (Colonia del Sacramento),, Physica A, 327 (2003), 12. doi: 10.1016/S0378-4371(03)00430-8. Google Scholar

[17]

M. E. Jones, S. M. Thomas and A. Rogers, Luria-Delbrück fluctuation experiments: Design and analysis,, Genetics, 136 (1994), 1209. Google Scholar

[18]

E. Kashdan and L. Pareschi, Mean field dynamics and the continuous Luria-Delbrück distribution,, Mathematical Biosciences, 240 (2012), 223. doi: 10.1016/j.mbs.2012.08.001. Google Scholar

[19]

D. G. Kendall, Stochastic processes and population growth,, Journal of the Royal Statistical Society, 11 (1949), 230. Google Scholar

[20]

A. L. Koch, Mutation and growth rates from Luria-Delbrück fluctuation tests,, Mutat. Res., 95 (1982), 129. Google Scholar

[21]

D. E. Lea and C. A. Coulson, The distribution of the numbers of mutants in bacterial populations,, J. Genetics, 49 (1949), 264. Google Scholar

[22]

S. E. Luria and M. Delbrück, Mutations of bacteria from virus sensitivity to virus resistance,, Genetics, 28 (1943), 491. Google Scholar

[23]

W. T. Ma, G. v. H. Sandri and S. Sarkar, Analysis of the Luria and Delbrück distribution using discrete convolution powers,, J. Appl. Prob., 29 (1992), 255. Google Scholar

[24]

B. Mandelbrot, A population birth-and-mutation process, I: Explicit distributions for the number of mutants in an old culture of bacteria,, J. Appl. Prob., 11 (1974), 437. Google Scholar

[25]

D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies,, J. Stat. Phys., 130 (2008), 1087. doi: 10.1007/s10955-007-9462-2. Google Scholar

[26]

A. G. Pakes, Remarks on the Luria-Delbrück distribution,, J. Appl. Prob., 30 (1993), 991. Google Scholar

[27]

L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic equations & Monte Carlo Methods,, Oxford University Press, (2013). Google Scholar

[28]

F. Slanina, Inelastically scattering particles and wealth distribution in an open economy,, Phys. Rev. E, 69 (2004). Google Scholar

[29]

F. M. Stewart, D. M. Gordon and B. R. Levin, Fluctuation analysis: The probability distribution of the number of mutants under different conditions,, Genetics, 124 (1990), 175. Google Scholar

[30]

G. Toscani, Kinetic models of opinion formation,, Commun. Math. Sci., 4 (2006), 481. Google Scholar

[31]

Q. Zheng, Progress of a half century in the study of the Luria-Delbrück distribution,, Math. Biosciences, 162 (1999), 1. doi: 10.1016/S0025-5564(99)00045-0. Google Scholar

[1]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[2]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[3]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[4]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[5]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[6]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[7]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[8]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[9]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[10]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[11]

Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks & Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002

[12]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 741-754. doi: 10.3934/dcdss.2020041

[13]

Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125

[14]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[15]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[16]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[17]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[18]

Axel Klar, Florian Schneider, Oliver Tse. Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations. Kinetic & Related Models, 2014, 7 (3) : 509-529. doi: 10.3934/krm.2014.7.509

[19]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[20]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]