December  2013, 6(4): 1043-1055. doi: 10.3934/krm.2013.6.1043

A kinetic description of mutation processes in bacteria

1. 

University of Pavia, Department of Mathematics, Via Ferrata 1, 27100 Pavia

Received  September 2013 Revised  September 2013 Published  November 2013

The Luria--Delbrück mutation model has been mathematically formulated in a number of ways. Last, a mean field picture derived from a kinetic formulation has been derived by Kashdan and Pareschi in [18]. There, the Luria--Delbrück distribution appears as the solution of a Fokker-Planck like equation obtained as the quasi-invariant asymptotics of a linear Boltzmann equation for the number density of the number of mutated cells. This paper addresses the kinetic description for the Lea--Coulson formulation [21], as well as for the Kendall formulation [19], focusing on important modeling issues closely linked with the distribution of the number of mutants. The paper additionally emphasizes basic principles which not only help to unify existing results but also allow for a useful extensions.
Citation: Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic and Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043
References:
[1]

W. P. Angerer, An explicit representation of the Luria-Delbrück distribution, J. Math. Biol., 42 (2001), 145-174. doi: 10.1007/s002850000053.

[2]

P. Armitage, The statistical theory of bacterial populations subject to mutation, J. Royal Statist. Soc. B, 14 (1952), 1-40.

[3]

M. S. Bartlett, An Introduction to Stochastic Processes With Special Reference to Methods and Applications, Second edition Cambridge University Press, London-New York, 1966.

[4]

A. V. Bobylev, The theory of the spatially Uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Review C, 7 (1988), 111-233.

[5]

C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[6]

A. Chakraborti, Distributions of money in models of market economy, Int. J. Modern Phys. C, 13 (2002), 1315-1321.

[7]

A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity, Eur. Phys. J. B, 17 (2000), 167-170.

[8]

A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution, Phys. Rev. E, 72 (2005), 026126.

[9]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0.

[10]

K. S. Crump and D. G. Hoel, Mathematical models for estimating mutation rates in cell populations, Biometrika, 61 (1974), 237-252.

[11]

A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money, Eur. Phys. Jour. B, 17 (2000), 723-729.

[12]

B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12 pp. doi: 10.1103/PhysRevE.78.056103.

[13]

B. Düring, D. Matthes and G. Toscani, A Boltzmann type approach to the formation of wealth distribution curves, Riv. Mat. Univ. Parma, 1 (2009), 199-261.

[14]

E. Gabetta, G. Toscani and B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, J. Statist. Phys., 81 (1995), 901-934. doi: 10.1007/BF02179298.

[15]

B. Hayes, Follow the money, American Scientist, 90 (2002), 400-405.

[16]

J. R. Iglesias, S. Gonçalves, S. Pianegonda, J. L. Vega and G. Abramson, Wealth redistribution in our small world, Nonequilibrium statistical mechanics and nonlinear physics (MEDYFINOL '02) (Colonia del Sacramento), Physica A, 327 (2003), 12-17. doi: 10.1016/S0378-4371(03)00430-8.

[17]

M. E. Jones, S. M. Thomas and A. Rogers, Luria-Delbrück fluctuation experiments: Design and analysis, Genetics, 136 (1994), 1209-1216.

[18]

E. Kashdan and L. Pareschi, Mean field dynamics and the continuous Luria-Delbrück distribution, Mathematical Biosciences, 240 (2012), 223-230. doi: 10.1016/j.mbs.2012.08.001.

[19]

D. G. Kendall, Stochastic processes and population growth, Journal of the Royal Statistical Society, B, 11 (1949), 230-264.

[20]

A. L. Koch, Mutation and growth rates from Luria-Delbrück fluctuation tests, Mutat. Res., 95 (1982), 129-143.

[21]

D. E. Lea and C. A. Coulson, The distribution of the numbers of mutants in bacterial populations, J. Genetics, 49 (1949), 264-285.

[22]

S. E. Luria and M. Delbrück, Mutations of bacteria from virus sensitivity to virus resistance, Genetics, 28 (1943), 491-511.

[23]

W. T. Ma, G. v. H. Sandri and S. Sarkar, Analysis of the Luria and Delbrück distribution using discrete convolution powers, J. Appl. Prob., 29 (1992), 255-267.

[24]

B. Mandelbrot, A population birth-and-mutation process, I: Explicit distributions for the number of mutants in an old culture of bacteria, J. Appl. Prob., 11 (1974), 437-444.

[25]

D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies, J. Stat. Phys., 130 (2008), 1087-1117. doi: 10.1007/s10955-007-9462-2.

[26]

A. G. Pakes, Remarks on the Luria-Delbrück distribution, J. Appl. Prob., 30 (1993), 991-994.

[27]

L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic equations & Monte Carlo Methods, Oxford University Press, Oxford 2013.

[28]

F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E, 69 (2004), 046102.

[29]

F. M. Stewart, D. M. Gordon and B. R. Levin, Fluctuation analysis: The probability distribution of the number of mutants under different conditions, Genetics, 124 (1990), 175-185.

[30]

G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.

[31]

Q. Zheng, Progress of a half century in the study of the Luria-Delbrück distribution, Math. Biosciences, 162 (1999), 1-32. doi: 10.1016/S0025-5564(99)00045-0.

show all references

References:
[1]

W. P. Angerer, An explicit representation of the Luria-Delbrück distribution, J. Math. Biol., 42 (2001), 145-174. doi: 10.1007/s002850000053.

[2]

P. Armitage, The statistical theory of bacterial populations subject to mutation, J. Royal Statist. Soc. B, 14 (1952), 1-40.

[3]

M. S. Bartlett, An Introduction to Stochastic Processes With Special Reference to Methods and Applications, Second edition Cambridge University Press, London-New York, 1966.

[4]

A. V. Bobylev, The theory of the spatially Uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Review C, 7 (1988), 111-233.

[5]

C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[6]

A. Chakraborti, Distributions of money in models of market economy, Int. J. Modern Phys. C, 13 (2002), 1315-1321.

[7]

A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity, Eur. Phys. J. B, 17 (2000), 167-170.

[8]

A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution, Phys. Rev. E, 72 (2005), 026126.

[9]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0.

[10]

K. S. Crump and D. G. Hoel, Mathematical models for estimating mutation rates in cell populations, Biometrika, 61 (1974), 237-252.

[11]

A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money, Eur. Phys. Jour. B, 17 (2000), 723-729.

[12]

B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12 pp. doi: 10.1103/PhysRevE.78.056103.

[13]

B. Düring, D. Matthes and G. Toscani, A Boltzmann type approach to the formation of wealth distribution curves, Riv. Mat. Univ. Parma, 1 (2009), 199-261.

[14]

E. Gabetta, G. Toscani and B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, J. Statist. Phys., 81 (1995), 901-934. doi: 10.1007/BF02179298.

[15]

B. Hayes, Follow the money, American Scientist, 90 (2002), 400-405.

[16]

J. R. Iglesias, S. Gonçalves, S. Pianegonda, J. L. Vega and G. Abramson, Wealth redistribution in our small world, Nonequilibrium statistical mechanics and nonlinear physics (MEDYFINOL '02) (Colonia del Sacramento), Physica A, 327 (2003), 12-17. doi: 10.1016/S0378-4371(03)00430-8.

[17]

M. E. Jones, S. M. Thomas and A. Rogers, Luria-Delbrück fluctuation experiments: Design and analysis, Genetics, 136 (1994), 1209-1216.

[18]

E. Kashdan and L. Pareschi, Mean field dynamics and the continuous Luria-Delbrück distribution, Mathematical Biosciences, 240 (2012), 223-230. doi: 10.1016/j.mbs.2012.08.001.

[19]

D. G. Kendall, Stochastic processes and population growth, Journal of the Royal Statistical Society, B, 11 (1949), 230-264.

[20]

A. L. Koch, Mutation and growth rates from Luria-Delbrück fluctuation tests, Mutat. Res., 95 (1982), 129-143.

[21]

D. E. Lea and C. A. Coulson, The distribution of the numbers of mutants in bacterial populations, J. Genetics, 49 (1949), 264-285.

[22]

S. E. Luria and M. Delbrück, Mutations of bacteria from virus sensitivity to virus resistance, Genetics, 28 (1943), 491-511.

[23]

W. T. Ma, G. v. H. Sandri and S. Sarkar, Analysis of the Luria and Delbrück distribution using discrete convolution powers, J. Appl. Prob., 29 (1992), 255-267.

[24]

B. Mandelbrot, A population birth-and-mutation process, I: Explicit distributions for the number of mutants in an old culture of bacteria, J. Appl. Prob., 11 (1974), 437-444.

[25]

D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies, J. Stat. Phys., 130 (2008), 1087-1117. doi: 10.1007/s10955-007-9462-2.

[26]

A. G. Pakes, Remarks on the Luria-Delbrück distribution, J. Appl. Prob., 30 (1993), 991-994.

[27]

L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic equations & Monte Carlo Methods, Oxford University Press, Oxford 2013.

[28]

F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E, 69 (2004), 046102.

[29]

F. M. Stewart, D. M. Gordon and B. R. Levin, Fluctuation analysis: The probability distribution of the number of mutants under different conditions, Genetics, 124 (1990), 175-185.

[30]

G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.

[31]

Q. Zheng, Progress of a half century in the study of the Luria-Delbrück distribution, Math. Biosciences, 162 (1999), 1-32. doi: 10.1016/S0025-5564(99)00045-0.

[1]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[2]

Hongjie Dong, Yan Guo, Timur Yastrzhembskiy. Kinetic Fokker-Planck and Landau equations with specular reflection boundary condition. Kinetic and Related Models, 2022, 15 (3) : 467-516. doi: 10.3934/krm.2022003

[3]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[6]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[7]

Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic and Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009

[8]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[9]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[10]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic and Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[11]

Roman Shvydkoy. Global hypocoercivity of kinetic Fokker-Planck-Alignment equations. Kinetic and Related Models, 2022, 15 (2) : 213-237. doi: 10.3934/krm.2022005

[12]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[13]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[14]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 741-754. doi: 10.3934/dcdss.2020041

[15]

Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks and Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002

[16]

Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125

[17]

Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic and Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011

[18]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[19]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[20]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]