March  2013, 6(1): 205-218. doi: 10.3934/krm.2013.6.205

On the Stokes approximation equations for two-dimensional compressible flows

1. 

College of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, China

Received  January 2012 Revised  September 2012 Published  December 2012

We deal with the unique global strong solution or classical solution to the Cauchy problem of the 2D Stokes approximation equations for the compressible flows with the density being some positive constant on the far field for arbitrarily large initial data, which may contain vacuum states. First, we prove that the density is bounded from above independently of time. Secondly, we show that if the initial density contains vacuum at least at one point, then the global strong (or classical) solution must blow up as time goes to infinity.
Citation: Qing Yi. On the Stokes approximation equations for two-dimensional compressible flows. Kinetic & Related Models, 2013, 6 (1) : 205-218. doi: 10.3934/krm.2013.6.205
References:
[1]

F. J. Chatelon and P. Orenga, Some smoothness and uniqueness results for a shallow-water problem,, Adv. Differential Equations, 3 (1998), 155.   Google Scholar

[2]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids,, J. Math. Pures Appl. (9), 83 (2004), 243.   Google Scholar

[3]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579.   Google Scholar

[4]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, 26 (2004).   Google Scholar

[5]

Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, J. Funct. Anal., 102 (1991), 72.   Google Scholar

[6]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^ q$ estimates for parabolic evolution equations,, Comm. Partial Differential Equations, 22 (1997), 1647.   Google Scholar

[7]

D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169.   Google Scholar

[8]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Arch. Rational Mech. Anal., 132 (1995), 1.   Google Scholar

[9]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.   Google Scholar

[10]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations,, Comm. Math. Phys., 216 (2001), 255.   Google Scholar

[11]

F. Huang, J. Li and Z. Xin, Convergence to equilibria and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows with large data,, J. Math. Pures Appl. (9), 86 (2006), 471.   Google Scholar

[12]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar

[13]

A. V. Kazhikhov and V. A. Weigant, Global solutions of equations of potential flows of a compressible viscous fluid for small Reynolds numbers,, Differential Equations, 30 (1994), 935.   Google Scholar

[14]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968).   Google Scholar

[15]

J. Li and Z. Xin, Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows,, J. Differential Equations, 221 (2006), 275.   Google Scholar

[16]

P. L. Lions, Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques,, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 1335.   Google Scholar

[17]

P. L. Lions, Compacité des solutions des équations de Navier-Stokes compressibles isentropiques,, C. R. Acad. Sci. Paris, 317 (1993).   Google Scholar

[18]

P. L. Lions, "Mathematical Topics in Fluid Mechanics,", Vol. 2. Compressible models. Oxford Science Publications. The Clarendon Press, (1998).   Google Scholar

[19]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[20]

A. Matsumura and T. Nishida, The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445.   Google Scholar

[21]

L. Min, A. V. Kazhikhov and S. Ukai, Global solutions to the Cauchy problem of the Stokes approximation equations for two-dimensional compressible flows,, Comm. Partial Differential Equations, 23 (1998), 985.   Google Scholar

[22]

R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behavior as $t\rightarrow \infty.$,, J. Fac. Sci. Univ. Tokyo Sect. IA, 40 (1993), 17.   Google Scholar

[23]

D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible,, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 639.   Google Scholar

[24]

D. Serre, On the one-dimensional equation of a viscous, compressible, heat-conducting fluid,, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 703.   Google Scholar

[25]

V. A. Solonnikov, On solvability of an initial boundary value problem for the equations of motion of viscous compressible fluid,, Zap. Nauchn. Sem. LOMI, 56 (1976), 128.   Google Scholar

[26]

A. Valli and W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case,, Comm. Math. Phys., 103 (1986), 259.   Google Scholar

[27]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.   Google Scholar

[28]

A. A. Zlotnik, Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations,, Diff. Equations, 36 (2000), 701.   Google Scholar

show all references

References:
[1]

F. J. Chatelon and P. Orenga, Some smoothness and uniqueness results for a shallow-water problem,, Adv. Differential Equations, 3 (1998), 155.   Google Scholar

[2]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids,, J. Math. Pures Appl. (9), 83 (2004), 243.   Google Scholar

[3]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579.   Google Scholar

[4]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, 26 (2004).   Google Scholar

[5]

Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, J. Funct. Anal., 102 (1991), 72.   Google Scholar

[6]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^ q$ estimates for parabolic evolution equations,, Comm. Partial Differential Equations, 22 (1997), 1647.   Google Scholar

[7]

D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169.   Google Scholar

[8]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Arch. Rational Mech. Anal., 132 (1995), 1.   Google Scholar

[9]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.   Google Scholar

[10]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations,, Comm. Math. Phys., 216 (2001), 255.   Google Scholar

[11]

F. Huang, J. Li and Z. Xin, Convergence to equilibria and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows with large data,, J. Math. Pures Appl. (9), 86 (2006), 471.   Google Scholar

[12]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar

[13]

A. V. Kazhikhov and V. A. Weigant, Global solutions of equations of potential flows of a compressible viscous fluid for small Reynolds numbers,, Differential Equations, 30 (1994), 935.   Google Scholar

[14]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968).   Google Scholar

[15]

J. Li and Z. Xin, Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows,, J. Differential Equations, 221 (2006), 275.   Google Scholar

[16]

P. L. Lions, Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques,, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 1335.   Google Scholar

[17]

P. L. Lions, Compacité des solutions des équations de Navier-Stokes compressibles isentropiques,, C. R. Acad. Sci. Paris, 317 (1993).   Google Scholar

[18]

P. L. Lions, "Mathematical Topics in Fluid Mechanics,", Vol. 2. Compressible models. Oxford Science Publications. The Clarendon Press, (1998).   Google Scholar

[19]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[20]

A. Matsumura and T. Nishida, The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445.   Google Scholar

[21]

L. Min, A. V. Kazhikhov and S. Ukai, Global solutions to the Cauchy problem of the Stokes approximation equations for two-dimensional compressible flows,, Comm. Partial Differential Equations, 23 (1998), 985.   Google Scholar

[22]

R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behavior as $t\rightarrow \infty.$,, J. Fac. Sci. Univ. Tokyo Sect. IA, 40 (1993), 17.   Google Scholar

[23]

D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible,, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 639.   Google Scholar

[24]

D. Serre, On the one-dimensional equation of a viscous, compressible, heat-conducting fluid,, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 703.   Google Scholar

[25]

V. A. Solonnikov, On solvability of an initial boundary value problem for the equations of motion of viscous compressible fluid,, Zap. Nauchn. Sem. LOMI, 56 (1976), 128.   Google Scholar

[26]

A. Valli and W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case,, Comm. Math. Phys., 103 (1986), 259.   Google Scholar

[27]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.   Google Scholar

[28]

A. A. Zlotnik, Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations,, Diff. Equations, 36 (2000), 701.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[16]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]