[1]
|
F. J. Chatelon and P. Orenga, Some smoothness and uniqueness results for a shallow-water problem, Adv. Differential Equations, 3 (1998), 155-176.
|
[2]
|
Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl. (9), 83 (2004), 243-275.
|
[3]
|
R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.
|
[4]
|
E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.
|
[5]
|
Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.
|
[6]
|
M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^ q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.
|
[7]
|
D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc., 303 (1987), 169-181.
|
[8]
|
D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Rational Mech. Anal., 132 (1995), 1-14.
|
[9]
|
D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.
|
[10]
|
D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations, Comm. Math. Phys., 216 (2001), 255-276.
|
[11]
|
F. Huang, J. Li and Z. Xin, Convergence to equilibria and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows with large data, J. Math. Pures Appl. (9), 86 (2006), 471-491.
|
[12]
|
A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.
|
[13]
|
A. V. Kazhikhov and V. A. Weigant, Global solutions of equations of potential flows of a compressible viscous fluid for small Reynolds numbers, Differential Equations, 30 (1994), 935-947.
|
[14]
|
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.
|
[15]
|
J. Li and Z. Xin, Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows, J. Differential Equations, 221 (2006), 275-308.
|
[16]
|
P. L. Lions, Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 1335-1340.
|
[17]
|
P. L. Lions, Compacité des solutions des équations de Navier-Stokes compressibles isentropiques, C. R. Acad. Sci. Paris, Sér I Math., 317 (1993), 115–-120.
|
[18]
|
P. L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. 2. Compressible models. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.
|
[19]
|
A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.
|
[20]
|
A. Matsumura and T. Nishida, The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464.
|
[21]
|
L. Min, A. V. Kazhikhov and S. Ukai, Global solutions to the Cauchy problem of the Stokes approximation equations for two-dimensional compressible flows, Comm. Partial Differential Equations, 23 (1998), 985-1006.
|
[22]
|
R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behavior as $t\rightarrow \infty.$, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 40 (1993), 17-51.
|
[23]
|
D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 639-642.
|
[24]
|
D. Serre, On the one-dimensional equation of a viscous, compressible, heat-conducting fluid, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 703-706.
|
[25]
|
V. A. Solonnikov, On solvability of an initial boundary value problem for the equations of motion of viscous compressible fluid, Zap. Nauchn. Sem. LOMI, 56 (1976), 128-142.
|
[26]
|
A. Valli and W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., 103 (1986), 259-296.
|
[27]
|
Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.
|
[28]
|
A. A. Zlotnik, Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations, Diff. Equations, 36 (2000), 701-716.
|