June  2013, 6(2): 219-243. doi: 10.3934/krm.2013.6.219

Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

2. 

School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

3. 

Laboratoire de Mathématiques de Versailles, CNRS UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue de États-Unis, 78035 Versailles cedex, France

Received  October 2012 Revised  November 2012 Published  February 2013

We are concerned with the long-time behavior of the growth-frag-mentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to $0$ and $+\infty$. Using these estimates we prove a spectral gap result by following the technique in [1], which implies that solutions decay to the equilibrium exponentially fast. The growth and fragmentation coefficients we consider are quite general, essentially only assumed to behave asymptotically like power laws.
Citation: Daniel Balagué, José A. Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinetic & Related Models, 2013, 6 (2) : 219-243. doi: 10.3934/krm.2013.6.219
References:
[1]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations,, J. Math. Pures Appl. (9), 96 (2011), 334.  doi: 10.1016/j.matpur.2011.01.003.  Google Scholar

[2]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model,, Math. Models Methods Appl. Sci., 20 (2010), 757.  doi: 10.1142/S021820251000443X.  Google Scholar

[3]

M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99.  doi: 10.1016/j.anihpc.2004.06.001.  Google Scholar

[4]

P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases],", Ph.D thesis, (2011).   Google Scholar

[5]

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation,, Comm. Math. Sci., 7 (2009), 503.   Google Scholar

[6]

J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations,", Lecture notes in Biomathematics, 68 (1986).   Google Scholar

[7]

P. Michel, Existence of a solution to the cell division eigenproblem,, Math. Models Methods Appl. Sci., 16 (2006), 1125.  doi: 10.1142/S0218202506001480.  Google Scholar

[8]

P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering,, C. R. Math. Acad. Sci. Paris, 338 (2004), 697.  doi: 10.1016/j.crma.2004.03.006.  Google Scholar

[9]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl. (9), 84 (2005), 1235.  doi: 10.1016/j.matpur.2005.04.001.  Google Scholar

[10]

B. Perthame, "Transport Equations in Biology,", Frontiers in Mathematics, (2007).   Google Scholar

[11]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation,, J. Differential Equations, 210 (2005), 155.  doi: 10.1016/j.jde.2004.10.018.  Google Scholar

[12]

B. Perthame and D. Salort, Distributed elapsed time model for neuron networks,, in preparation., ().   Google Scholar

[13]

R. Wong, "Asymptotic Approximation of Integrals,", Corrected reprint of the 1989 original, 34 (1989).  doi: 10.1137/1.9780898719260.  Google Scholar

show all references

References:
[1]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations,, J. Math. Pures Appl. (9), 96 (2011), 334.  doi: 10.1016/j.matpur.2011.01.003.  Google Scholar

[2]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model,, Math. Models Methods Appl. Sci., 20 (2010), 757.  doi: 10.1142/S021820251000443X.  Google Scholar

[3]

M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99.  doi: 10.1016/j.anihpc.2004.06.001.  Google Scholar

[4]

P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases],", Ph.D thesis, (2011).   Google Scholar

[5]

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation,, Comm. Math. Sci., 7 (2009), 503.   Google Scholar

[6]

J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations,", Lecture notes in Biomathematics, 68 (1986).   Google Scholar

[7]

P. Michel, Existence of a solution to the cell division eigenproblem,, Math. Models Methods Appl. Sci., 16 (2006), 1125.  doi: 10.1142/S0218202506001480.  Google Scholar

[8]

P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering,, C. R. Math. Acad. Sci. Paris, 338 (2004), 697.  doi: 10.1016/j.crma.2004.03.006.  Google Scholar

[9]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl. (9), 84 (2005), 1235.  doi: 10.1016/j.matpur.2005.04.001.  Google Scholar

[10]

B. Perthame, "Transport Equations in Biology,", Frontiers in Mathematics, (2007).   Google Scholar

[11]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation,, J. Differential Equations, 210 (2005), 155.  doi: 10.1016/j.jde.2004.10.018.  Google Scholar

[12]

B. Perthame and D. Salort, Distributed elapsed time model for neuron networks,, in preparation., ().   Google Scholar

[13]

R. Wong, "Asymptotic Approximation of Integrals,", Corrected reprint of the 1989 original, 34 (1989).  doi: 10.1137/1.9780898719260.  Google Scholar

[1]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[2]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[3]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[4]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[11]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[12]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[13]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[14]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[15]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[16]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[17]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[18]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[20]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (15)

[Back to Top]