\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates

Abstract Related Papers Cited by
  • We are concerned with the long-time behavior of the growth-frag-mentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to $0$ and $+\infty$. Using these estimates we prove a spectral gap result by following the technique in [1], which implies that solutions decay to the equilibrium exponentially fast. The growth and fragmentation coefficients we consider are quite general, essentially only assumed to behave asymptotically like power laws.
    Mathematics Subject Classification: Primary: 35B40, 45C05, 45K05; Secondary: 82D60, 92C37.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334-362.doi: 10.1016/j.matpur.2011.01.003.

    [2]

    M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.doi: 10.1142/S021820251000443X.

    [3]

    M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.doi: 10.1016/j.anihpc.2004.06.001.

    [4]

    P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases]," Ph.D thesis, Paris, 2011.

    [5]

    P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation, Comm. Math. Sci., 7 (2009), 503-510.

    [6]

    J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations," Lecture notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986.

    [7]

    P. Michel, Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., 16 (2006), 1125-1153.doi: 10.1142/S0218202506001480.

    [8]

    P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering, C. R. Math. Acad. Sci. Paris, 338 (2004), 697-702.doi: 10.1016/j.crma.2004.03.006.

    [9]

    P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl. (9), 84 (2005), 1235-1260.doi: 10.1016/j.matpur.2005.04.001.

    [10]

    B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.

    [11]

    B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, J. Differential Equations, 210 (2005), 155-177.doi: 10.1016/j.jde.2004.10.018.

    [12]

    B. Perthame and D. SalortDistributed elapsed time model for neuron networks, in preparation.

    [13]

    R. Wong, "Asymptotic Approximation of Integrals," Corrected reprint of the 1989 original, Classics in Applied Mathematics, 34, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.doi: 10.1137/1.9780898719260.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return