June  2013, 6(2): 245-268. doi: 10.3934/krm.2013.6.245

Large deviations for the solution of a Kac-type kinetic equation

1. 

Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100, Pavia, Italy

2. 

Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milanod, Italy

Received  October 2012 Revised  November 2012 Published  February 2013

The aim of this paper is to study large deviations for the self-similar solution of a Kac-type kinetic equation. Under the assumption that the initial condition belongs to the domain of normal attraction of a stable law of index $\alpha < 2$ and under suitable assumptions on the collisional kernel, precise asymptotic behavior of the large deviations probability is given.
Citation: Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic & Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245
References:
[1]

K. B. Athreya and P. E. Ney, "Branching Processes,", Reprint of the 1972 original, (1972).   Google Scholar

[2]

F. Bassetti and L. Ladelli, Self similar solutions in one-dimensional kinetic models: A probabilistic view,, Ann. Appl. Prob., 22 (2012), 1928.   Google Scholar

[3]

F. Bassetti, L. Ladelli and D. Matthes, Central limit theorem for a class of one-dimensional kinetic equations,, Probab. Theory Related Fields, 150 (2011), 77.  doi: 10.1007/s00440-010-0269-8.  Google Scholar

[4]

F. Bassetti, L. Ladelli and E. Regazzini, Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model,, J. Stat. Phys., 133 (2008), 683.  doi: 10.1007/s10955-008-9630-z.  Google Scholar

[5]

F. Bassetti, L. Ladelli and G. Toscani, Kinetic models with randomly perturbed binary collisions,, J. Stat. Phys., 142 (2011), 686.  doi: 10.1007/s10955-011-0136-8.  Google Scholar

[6]

F. Bassetti and E. Perversi, Speed of convergence to equilibrium in Wasserstein metrics for Kac's like kinetic equations,, Electron. J. Probab., 18 (2013), 1.   Google Scholar

[7]

B. Basu, B. K. Chackabarti, S. R. Chackavart and K. Gangopadhyay, eds., "Econophysics & Economics of Games, Social Choices and Quantitative Techniques,", Springer-Verlag, (2010).   Google Scholar

[8]

D. Ben-Avraham, E. Ben-Naim, K. Lindenberg and A. Rosas, Self-similarity in random collision processes,, Phys. Rev. E, 68 (2003).   Google Scholar

[9]

A. V. Bobylev and C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions,, J. Statist. Phys., 110 (2003), 333.  doi: 10.1023/A:1021031031038.  Google Scholar

[10]

A. V. Bobylev, C. Cercignani and I. M. Gamba, Generalized kinetic Maxwell type models of granular gases,, in, 1937 (2008), 23.  doi: 10.1007/978-3-540-78277-3_2.  Google Scholar

[11]

A. V. Bobylev, C. Cercignani and I. M. Gamba, On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models,, Comm. Math. Phys., 291 (2009), 599.  doi: 10.1007/s00220-009-0876-3.  Google Scholar

[12]

A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications,", Second edition, (1998).   Google Scholar

[13]

E. Dolera, E. Gabetta and E. Regazzini, Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem,, Ann. Appl. Probab., 19 (2009), 186.  doi: 10.1214/08-AAP538.  Google Scholar

[14]

E. Dolera and E. Regazzini, The role of the central limit theorem in discovering sharp rates of convergence to equilibrium for the solution of the Kac equation,, Ann. Appl. Probab., 20 (2010), 430.  doi: 10.1214/09-AAP623.  Google Scholar

[15]

D. Duffie, G. Giroux and G. Manso, Information percolation,, American Economic Journal: Microeconomics, 2 (2010), 100.   Google Scholar

[16]

B. Fristedt and L. Gray, "A Modern Approach to Probability Theory,", Probability and its Applications, (1997).   Google Scholar

[17]

E. Gabetta and E. Regazzini, Central limit theorem for the solution of the Kac equation,, Ann. Appl. Probab., 18 (2008), 2320.  doi: 10.1214/08-AAP524.  Google Scholar

[18]

E. Gabetta and E. Regazzini, Central limit theorem for the solution of the Kac equation: Speed of approach to equilibrium in weak metrics,, Probab. Theory Related Fields, 146 (2010), 451.  doi: 10.1007/s00440-008-0196-0.  Google Scholar

[19]

C. C. Heyde, On large deviation problems for sums of random variables which are not attracted to the normal law,, Ann. Math. Statist., 38 (1967), 1575.   Google Scholar

[20]

C. C. Heyde, A contribution to the theory of large deviations for sums of independent random variables,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 7 (1967), 303.   Google Scholar

[21]

C. C. Heyde, On large deviation probabilities in the case of attraction to a non-normal stable law,, Sankhyā Ser. A, 30 (1968), 253.   Google Scholar

[22]

I. A. Ibragimov and Yu. V. Linnik, "Independent and Stationary Sequences of Random Variables,", Wolters-Noordhoff Publishing, (1971).   Google Scholar

[23]

M. Kac, Foundations of kinetic theory,, in, (1956), 1954.   Google Scholar

[24]

Z. Kielek, An application of convolution iterates to evolution equation in Banach space,, Univ. Iagel. Acta Math., 27 (1988), 247.   Google Scholar

[25]

D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies,, J. Statist. Phys., 130 (2008), 1087.  doi: 10.1007/s10955-007-9462-2.  Google Scholar

[26]

H. P. McKean, Jr., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas,, Arch. Rational Mech. Anal., 21 (1966), 343.   Google Scholar

[27]

L. Pareschi and G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models,, J. Statist. Phys., 124 (2006), 747.  doi: 10.1007/s10955-006-9025-y.  Google Scholar

[28]

M. Patriarca, E. Heinsalu and A. Chakraborti, Basic kinetic wealth-exchange models: Common features and open problems,, Eur. Phys. J. B, 73 (2010), 145.   Google Scholar

[29]

A. Pulvirenti and G. Toscani, Asymptotic properties of the inelastic Kac model,, J. Statist. Phys., 114 (2004), 1453.  doi: 10.1023/B:JOSS.0000013964.98706.00.  Google Scholar

[30]

V. Vinogradov, "Refined Large Deviation Limit Theorems,", Pitman Research Notes in Mathematics Series, 315 (1994).   Google Scholar

[31]

V. M. Yakovenko, Statistical mechanics approach to econophysics,, in, ().   Google Scholar

show all references

References:
[1]

K. B. Athreya and P. E. Ney, "Branching Processes,", Reprint of the 1972 original, (1972).   Google Scholar

[2]

F. Bassetti and L. Ladelli, Self similar solutions in one-dimensional kinetic models: A probabilistic view,, Ann. Appl. Prob., 22 (2012), 1928.   Google Scholar

[3]

F. Bassetti, L. Ladelli and D. Matthes, Central limit theorem for a class of one-dimensional kinetic equations,, Probab. Theory Related Fields, 150 (2011), 77.  doi: 10.1007/s00440-010-0269-8.  Google Scholar

[4]

F. Bassetti, L. Ladelli and E. Regazzini, Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model,, J. Stat. Phys., 133 (2008), 683.  doi: 10.1007/s10955-008-9630-z.  Google Scholar

[5]

F. Bassetti, L. Ladelli and G. Toscani, Kinetic models with randomly perturbed binary collisions,, J. Stat. Phys., 142 (2011), 686.  doi: 10.1007/s10955-011-0136-8.  Google Scholar

[6]

F. Bassetti and E. Perversi, Speed of convergence to equilibrium in Wasserstein metrics for Kac's like kinetic equations,, Electron. J. Probab., 18 (2013), 1.   Google Scholar

[7]

B. Basu, B. K. Chackabarti, S. R. Chackavart and K. Gangopadhyay, eds., "Econophysics & Economics of Games, Social Choices and Quantitative Techniques,", Springer-Verlag, (2010).   Google Scholar

[8]

D. Ben-Avraham, E. Ben-Naim, K. Lindenberg and A. Rosas, Self-similarity in random collision processes,, Phys. Rev. E, 68 (2003).   Google Scholar

[9]

A. V. Bobylev and C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions,, J. Statist. Phys., 110 (2003), 333.  doi: 10.1023/A:1021031031038.  Google Scholar

[10]

A. V. Bobylev, C. Cercignani and I. M. Gamba, Generalized kinetic Maxwell type models of granular gases,, in, 1937 (2008), 23.  doi: 10.1007/978-3-540-78277-3_2.  Google Scholar

[11]

A. V. Bobylev, C. Cercignani and I. M. Gamba, On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models,, Comm. Math. Phys., 291 (2009), 599.  doi: 10.1007/s00220-009-0876-3.  Google Scholar

[12]

A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications,", Second edition, (1998).   Google Scholar

[13]

E. Dolera, E. Gabetta and E. Regazzini, Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem,, Ann. Appl. Probab., 19 (2009), 186.  doi: 10.1214/08-AAP538.  Google Scholar

[14]

E. Dolera and E. Regazzini, The role of the central limit theorem in discovering sharp rates of convergence to equilibrium for the solution of the Kac equation,, Ann. Appl. Probab., 20 (2010), 430.  doi: 10.1214/09-AAP623.  Google Scholar

[15]

D. Duffie, G. Giroux and G. Manso, Information percolation,, American Economic Journal: Microeconomics, 2 (2010), 100.   Google Scholar

[16]

B. Fristedt and L. Gray, "A Modern Approach to Probability Theory,", Probability and its Applications, (1997).   Google Scholar

[17]

E. Gabetta and E. Regazzini, Central limit theorem for the solution of the Kac equation,, Ann. Appl. Probab., 18 (2008), 2320.  doi: 10.1214/08-AAP524.  Google Scholar

[18]

E. Gabetta and E. Regazzini, Central limit theorem for the solution of the Kac equation: Speed of approach to equilibrium in weak metrics,, Probab. Theory Related Fields, 146 (2010), 451.  doi: 10.1007/s00440-008-0196-0.  Google Scholar

[19]

C. C. Heyde, On large deviation problems for sums of random variables which are not attracted to the normal law,, Ann. Math. Statist., 38 (1967), 1575.   Google Scholar

[20]

C. C. Heyde, A contribution to the theory of large deviations for sums of independent random variables,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 7 (1967), 303.   Google Scholar

[21]

C. C. Heyde, On large deviation probabilities in the case of attraction to a non-normal stable law,, Sankhyā Ser. A, 30 (1968), 253.   Google Scholar

[22]

I. A. Ibragimov and Yu. V. Linnik, "Independent and Stationary Sequences of Random Variables,", Wolters-Noordhoff Publishing, (1971).   Google Scholar

[23]

M. Kac, Foundations of kinetic theory,, in, (1956), 1954.   Google Scholar

[24]

Z. Kielek, An application of convolution iterates to evolution equation in Banach space,, Univ. Iagel. Acta Math., 27 (1988), 247.   Google Scholar

[25]

D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies,, J. Statist. Phys., 130 (2008), 1087.  doi: 10.1007/s10955-007-9462-2.  Google Scholar

[26]

H. P. McKean, Jr., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas,, Arch. Rational Mech. Anal., 21 (1966), 343.   Google Scholar

[27]

L. Pareschi and G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models,, J. Statist. Phys., 124 (2006), 747.  doi: 10.1007/s10955-006-9025-y.  Google Scholar

[28]

M. Patriarca, E. Heinsalu and A. Chakraborti, Basic kinetic wealth-exchange models: Common features and open problems,, Eur. Phys. J. B, 73 (2010), 145.   Google Scholar

[29]

A. Pulvirenti and G. Toscani, Asymptotic properties of the inelastic Kac model,, J. Statist. Phys., 114 (2004), 1453.  doi: 10.1023/B:JOSS.0000013964.98706.00.  Google Scholar

[30]

V. Vinogradov, "Refined Large Deviation Limit Theorems,", Pitman Research Notes in Mathematics Series, 315 (1994).   Google Scholar

[31]

V. M. Yakovenko, Statistical mechanics approach to econophysics,, in, ().   Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[3]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[12]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[13]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]