Citation: |
[1] |
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., 152 (2000), 327-355.doi: 10.1007/s002050000083. |
[2] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal., 255 (2008), 2013-2066.doi: 10.1016/j.jfa.2008.07.004. |
[3] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010.doi: 10.1016/j.jfa.2011.10.007. |
[4] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: II, global existence for hard potential, Analysis and Applications, 9 (2011), 113-134.doi: 10.1142/S0219530511001777. |
[5] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Rat. Mech. Anal., 202 (2011), 599-661.doi: 10.1007/s00205-011-0432-0. |
[6] |
L. Desvillettes, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys., 168 (1995), 417-440. |
[7] |
L. Desvillettes, G. Furioli and E. Terraneo, Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules, Trans. Amer. Math. Soc., 361 (2009), 1731-1747.doi: 10.1090/S0002-9947-08-04574-1. |
[8] |
L. Desvillettes and F. Golse, On a model Boltzmann equation without angular cutoff, Diff. Int. Eq., 13 (2000), 567-594. |
[9] |
L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Part. Diff. Equations, 29 (2004), 133-155.doi: 10.1081/PDE-120028847. |
[10] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators," Corrected reprint of the 1985 original. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 275, Springer-Verlag, Berlin, 1994. |
[11] |
Z. H. Huo, Y. Morimoto, S. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinetic and Related Models, 1 (2008), 453-489.doi: 10.3934/krm.2008.1.453. |
[12] |
N. Lekrine and C.-J. Xu, Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation, Kinetic and Related Models, 2 (2009), 647-666.doi: 10.3934/krm.2009.2.647. |
[13] |
P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London A, 346 (1994), 191-204.doi: 10.1098/rsta.1994.0018. |
[14] |
Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff, J. Pseudo-Differ. Oper. Appl., 1 (2010), 139-159.doi: 10.1007/s11868-010-0008-z. |
[15] |
Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst., 24 (2009), 187-212.doi: 10.3934/dcds.2009.24.187. |
[16] |
S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math., 1 (1984), 141-156.doi: 10.1007/BF03167864. |
[17] |
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.doi: 10.1007/s002050050106. |
[18] |
T.-F. Zhang and Z. Yin, Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff, J. Differential Equations, 253 (2012), 1172-1190.doi: 10.1016/j.jde.2012.04.023. |